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ABSTRACT

This research used Huygens-Fresnel wave optics computer simulations to
investigate the effects of high turbulence strength and inner scale on the
normalized irradiance variance and coherence iength of electromagnetic waves
propagating throuoh a turbulent atmosphere. These investigations developed
several guidelir.. .or ndity of propagstion simuiations empioying a numerical,
split-step, Huygens-resrie' method, end within these guidelines, considered five
types of turbulence spectrum inner scsle: (1) zero inner scale, (2) Gaussian inner
scale, (3) Hill's and (4) Frehlich's viscous-convective enhancement inner scales,
and (5) turbulence spectrum truncstion from the discrete grid representation. The
simuiation results showed that the normalized iwr-adiance variance generaily
decreased (~30%) beiow the zero inner scale values in the Rytov regime with
increasing inner scale size, but increased monotonicslly in the saturation regime,
and agreed within 2% of the Rytov-Tastarski predictions at low turbulence strengths.
The E-field coherence length in a spatially confined beam, with either spherical or
piane wave divergence and zero inner scale, followed the Rytov-Tatarski-Fried
predictions in the Rytov regime, but departed from the theory in the saturation
regime. Increasing inner scale size modified this finite beam behavior by raising

the coherence length (up to ~50%) in the saturation regime. | oor "
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. INTRODUCTION

Turbulence in a stratified fluid causes random inhomogeneities in
temperature and the index of refraction that scatter and diffract a wave
propagating through such s medium. Analytical perturbation techniques
deveioped over the past three decades cannot account for the vanations
observed experimentaily in the amplitude and phase distributions of 8
propagating wave when turbuience leveis are high and/or propagation paths are
long. Over the past fifteen years, numerical wave optics codes based on the
Huygens-Fresnel principie have been deveiloped o address these situations.
This research extended these codes to include inner scale in the spectrum of
refractive index fluctustions and 0 examine the coherence length and the
effects of inner scaie in ths Rytov regime (low turbulence strengths and/or shon
propagation paths) and in the ssturstion regime (high turbulence strengths
and/or long propegation paths).

As a first step, extensive analysis and testing developed guidelines for
validity of computer simulations empioying Huygens-Fresnel propagstion over
multipie steps (spiit-siep method) These guidelines include.




» For an NxN grid and propagation distance L, the grid element size should
be Ax = JILTN.

« The maximum turbulence strengths C.} and propagation distances L for
spherical wave propagation with an NxN grid should satisfy
Bo 0.1 N° where Bga= 0497 CJ k™ L"S.

- Equivalently, the E-fleid coherence length r, should satisfy
f, 225 Ax, where r, represents Fried’s coherence length (for
spherical waves).

* Use 2 30 phase screens/steps for each propagastion.

* Use 2 30 propagstion realizstions (0 get representative statistics.

« Phase screens require low spatial frequency comection (o gain 5%
JAccuracy in normalized irradiance variance and as much as 30% in
coherence length.

* Half width at haif maximum of the stmospheric MTF and sn iterative fit r,
provide the most stadle parameterizations of the E-feld coherencs length.

+ Teiltale signs of sliasing inciude a fine-grained iradiance pattem, 8 baxed
perimeter 0 the iradiance patiem, and peaking of the energy toward the
center of the computation grid.
These investigations aiso examined four choices of €-fleld source function and
refined the methods of normaiized ¥Tadience veriance and E-feid coherence
length caiculation

These simulations inCorporsted five types of turdulence spectrum inner
scale (1) zero inner scale, (2) Gaussian inner scale, (3) Hill's and (4) Frehlich's

VISCOUS-CONVECTive enhancement iNner scaies. and (5) turbulencs spectrum




truncation from the discrete grid representation. For the more physically

realistic viscous-convective enhancement inner scale, the computer simulations

—

provided the following resuits:

* The Hill and Frehlich parameterizations performed aimost identically,
giving less than 3% difference in normailized irradiance variance over the
Rytov and saturation regimes.

* In the Rytov regime, the normalized irradiance variance for an
approximately spherically diverging beam increased (~30%) and then
decreased (~30%) compared (o the zero inner scale values as the inner

scale size increased, and the E-fleid coherence length r, decreased
slightly (~5%) compared to the zero inner scale coherence length.

* In the saturation regime, increasing inner scale size gave monotonically
inCreasing normaiized iradiancs veriance and increased the coherence
length {up to ~50%) compared (o the zero inner scale case.
The effect of the Gaussian inner scale on normalkized irrsdiance variance and
coherance length was aiso investigated.

These investigations examined the behavior of the E-field coherence
length for E-fieids (beams) that were constrained in iateral extent to the grid
size but whose divergence spproximated that of sphericsl waves, plane waves,

and intermediate beam waves. The computer simulations showed that:

* For the Rytov regime, the spherical and plane wave Cases gave
coherence lengths within 5% of the Rytov-Tstarski-Fried predictions.

* in the saturation regime. the E-fleid coherence lengths for the spherical
wave approximation decreased ~25% bdelow the theory, while the
coherence lengths for the plane wave spproximation varied within
-5%/+15% of the theory.




+ The E-field coherence lengths for the beam wave cases were spaced
between the spherical and plane wave values for the Rytov regime, but
increased toward the spherical wave values in the saturation regime.

The spatially confined beams used in these simulations showed a departure in
behavior of the E-field coherence length in the saturation regime from the
predictions of first order perturbation theory.

The organization of this dissertation generally follows the preceding
summary of major points. Chapter Il summarizes the theory of wave optics and
the impler antation of the Huygens-Fresnel propagation in a computer
simulation. [t then provides an overview of the Rytov-Tatarski theory for the
effect of atmospheric turbulence, including inner scale, on the normalized
irradiance variance and E-field coherence length as applied to spherical wave
propagation. Chapter Il discusses the detailed choices of physical and
simulation parameters and develops the guidelines to ensure validity of the
simulation. Chapter IV presents the computer simulation results, first for the
inner scale effects on normalized irradiance variance, then for the behavior of
the E-field coherence length in the Rytov and saturation regimes, and for the

effect of inner scale on coherence length.




il. BACKGROUND

A. CHAPTER OVERVIEW

This chapter summarizes first the theory of electromagnetic wave
propagation and the Huygens-Fresnel solution to the scalar wave equation and
recasts the Huygens-Fresnel solution into a form utilizing fast Fourier
transforms easily implemented in a computer simulation. it then summarizes
the Rytov-Tatarski solution to the scalar wave equation which used first order
perturbation theory and statistical techniques to describe the spatial variations
of *we irradiance of an electromagnetic wave propagated through a turbulent
medium. The Kolmogorov spectrum of refractive index fluctuations is
introduced as well as five types of inner scale which modify the high spatial
frequency portion of this spectrum. The chapter concludes by describing
Fried's method for parameterizing the coherence length of the E-field for a

spherically-diverging wave propagating through a turbulent medium.

B. WAVE PROPAGATION
Maxwell's equations describe of the propagation of electromagnetic
waves through a turbulent medium. Assuming a locally homogeneous,

isotropic, and linear medium,




A gt it

V-c€-op, (%)
v-8-0, (2)

. .28 3

vx € Th (3)
719'0502-%7:-1. 4)

where hatted (*) quaniities represent veciors. At the frequencies and fleld
strengths of interest, the medium may be sssumed t0 have zero local free
charge density p and zero (or negiigible) conductivity o. Laser beams in the
stmosphere satisfy these conditions. Expanding the left-hend side of Eq. (1)
and combining the curt of Eq. (3) and the time derivative of EQ. (4) gives 8

vector wave equation for the E-fleld

V£ . V(€ - th)-pca‘e-o ()

The middie term represents depolarization of the E field and is negligly small
for propagstion through a turbulent stmosphere (Taterski, 1981, Lawrence end
Strohbehn, 1970). Neglecting the middie term simpiifies the vector wave
equsation to

veg - ui’a_‘f ®)




The Fresnel-Kirchoff diffraction theory provides sn approximate scalar
solution 10 this vector wave equation. Following Hecht (1887), the spherical

wave solution is

a(-') * 'E{"g .m -."' m

where E, is a constant and k = 2w/A . Using EqQ. (7) with the time dependence
factored out, the Kirchof! integral theorem becomes

E, - iff, Lovew o - [f, €0 9(Z) o). ®

which must be svaiusted over 8 surface S enclosing the fieid point P.  Figure
(1) ustrates the relationship between the distances { and n. If the wavelength

A <<? n . EQ (B) reduces 10 the Fresnei-Kirchoff diffraction formula

E'I o™
& -3 [ Ko oS, ®)
where K(0) represents the obliquity factor

integrating EQ (9) over the half sphere S (shown in Fig. (1)) as the
radius approaches infinity. the slectric fieid ampiitude is appreciable only over @
finite aperture area A of the hemisphere's fiat side. Then Eq. (9) reduces to the

more familisr Huygens-Fresnel expression




Figwe 1 Fresnei-Kirchoff diffraction geometry showing reistionship between
30urce, sperture A, surface S, and field point P.

&« 3 ff, £ L K o

The compiex aperture function E, contains the source spherical wave factor,
exp(iZ)Z . The E-fieid at a point P is a function of the E-fleld over s finite

aperture A.




The Huygens-Fresnel formulation , Eq. (10), serves as the basis for
caiculating the propagation of a wave through turbulence. This formula can
now be cast into a form easily impl:m‘ontod in a propagation computer
simulation. Applying the Cartesian coordinate system of Fig. (2), the Huygens-
Fresnel principle becomes,

Ee) - 5 [f, €GO 2 e I”"_'_; i,: K(®) da. (1)
-
r

A

NS

Aperture

Figwe 2 Propagation coordinate system showing reiations between the
aperiure variables and the field variables.




! represents the position vector of the observation point P in the x-y plane and

p represents the position vector of the radiating point in the aperture piane.
The paraxial approximation assumes that

N<z and |3| <z (12)
where z measures the longitudinal distance of the point P from the aperture.
Consequently, the obliquity factor K(0)=(1+cos0)/2 becomes approximately 1
and the denominator of the integrand is approximately z . odman,1988),

Era) = <L [[, EGO) T an (3)

Following Roberts (1886), the Fresne! approximation assumes that the lateral
displacement between the radiating point and the observation point

| ?-p | << z. Then, using the lowest order terms for the series expansion
of the complex exponential's argument, Eq. (13) becomes

_Iat‘_l [

En) - L[ EGoy etV T

S - 320 (14)
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The factor exp(-2xiz/A) represents the change in phase of the optical wave from
the center of the aperture plane to the plane of the observation point P. It
applies to the whole E-field and depends only on the propagation distance z. It
does not affect the phase variation across the E-field nor the amplitude of the
E-field, and will be dropped in the following expressions for simplicity.

Equation (14) can be recast into a form utilizing Fourier transforms.
Expanding the aperture field E(§,0) in Eq. (14) using the Fourier transform
identity

E(.0) - [d e'B [dp’ o'W E(3'0), (18)

Eq. (14) becomes

I (o . P 1 TN
E(h2)- - [dp [ [t ot [dp’ 02+ E(3,0) ] e . (18)

(Note: these equations use spatial frequency 7 (m™) instead of spatial

wavenumber & = 2x 7 (rad/m) because the discrete Fourier transform
computer subroutines used in these investigations are written with spatial

frequency 7.) Making the change of variables » = P - § gives

11




L AT L]
E(’,Z) - --i,; f(_‘l) [ Id .IIM I*I ’-IIH'E(aI.o) ] .ltvll '

(17

. L fd oM fﬁ, o 2N E(3'.0) [ fdl PRl L ‘%lﬂi ]_
Az

The last integration over d/ is the Fourier transform of a Gaussian function,

h|c

[ o-est 0i# | .z emrzit (18)

Substituting § for ¢/, the E-fieid of Eq. (17) becomes
E(hz) = [d e o-mr:M [df E(p,0) 0-2H. (19)

Equation (19) may be symbolically written as

E(rhz) = IFT] o= FTIE(,0))), (29)
where FT and IFT represent the two-dimensional Fourier transform and inverse
Fourier transform, respectively. Equation (20) expresses the E-field at a
propagation distance z in terms of Fourier transforms of the E-fieki atz2 =0

represented in a Cartesian coordinate system. This form of the Huygens-
Fresnel principle is useful for a simulation that subdivides the propagation path

into a sequence of short Fresnel propagation steps.

12
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C. EFFECTS OF TURBULENCE ON THE PROPAGATED WAVE

1. iradiance Variance and inner Scale

The next step in modeling the propagation of an E-field through a
turbulent medium requires a statistical characterization of the turbulence and its
effect on the spatial statistics of the propagating wave. To begin understanding
the effect of turbuience upon the wave, consider a spherical wave incident upon
a medium with randomly varying index of refraction, as shown in Fig. (3). For
small variations in the index of refraction about the mean value, scattering
occurs predominantly in the forward direction (Tatarski, 1961). The regions of
index of refraction fluctuation accelerate/retard portions of the wavefront over
short propagation distances and cause variations in phase across the reference
spherical wavefront. Subsequent diffraction and interference then create
variations in irradiance across the wavefront. Compared to propagation through
zero turbulence (Fig. (4)), a spherically diverging beam now exhibits significant
varistions in phase and ampilitude (irradiance) (Fig. (5)).

A statistical description of the refractive index fluctuations is
needed to caiculate the E-fieid variations. The index of refraction, n, in air
depends upon the temperature T and pressure P (Tatarski, 19681). At visible
wavelengths,

13




Figure 3 Wave propagating through a medium having random inhomogeneities
in index of refraction.

- 1 = Tox10-% B (milbars) 1)
. TH

The temperature profile in the atmosphere possesses significant stratification,
as shown in Fig. (6) (Walters, 1984). Velocity shear between different layers in
the atmosphere causes turbulence which disrupts the interface between these
lsyers, mixing regions of different temperatures. The velocity fluctuations
generated by the turbuience at the interface between layers generally follow the
Koimogorov spectrum,

14




Figure 4 Irradiance piot for a spherically diverging beam propagated through
2ero turbuience.
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Figure § Irraciance piot for spherically diverging besm propagated through
turbuience.
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Figure 8 Vertical profile of tempersture in the atmosphere.

Ox) = "B, (22)
assuming isotropic and homogeneous turbulence. x represents spatisl
wavenumber in rad/m. Temperature is a "passive additive” (Tatarski, 1981) in
the atmosphere, meaning that i does not affect the dynamics of the turbuience.
Thus, the three-dimensional spectrum of temperature fluctuations siso follows
the Koimogorov spectrum. Since Eq. (21) reistes the index of refraction 1o
tempersture, the spectrum of refractive index fluctustions is siso Kolimogorov
(Tatarski, 1981)

®,(x,2) = 0.038 CXz) P, (23)

17




where C %(2) is a constant of proportionality indicating the strength of the
turbulence. in reality, this spectrum only applies to an intermediate range of
wavenumbers known as the inertial subrange, shown in Fig. (7). The
boundaries at the high and low spatial wavenumbers are the inner and outer

scales, respectively, and are discussed below.

= 1074 z
w -8 -
= 10712 v
< 10°'8 o

,0-20 - K

K (.“) ianer Scale

Figuwe 7 Atmospheric spectrum of refractive index fluctustions showing inertial
subrange and outer and inner scales.

WIth this understanding of the effect of turbulence on 8
propagating E-fleld, Tatarsii (1961) derived expressions for the ststistical
properties of the amplitude. phase, and iradiance of 8 spherical wave
propagating thwough a turdulent medium as follows. Consider a scalar

component of the vecior wave equation £q. (6) and sssume a harmonic time

18




dependence for the E-field

E(t) = u(?) e’ (24)

Perform the time derivatives and introduce the wavenumber k = 2r/A, and the

index of refraction

n=cype (265)

(where ¢ = velocity of light in vacuum, g = magnetic permeability of the
medium, ¢ = electric permittivity of the medium ) to get the scalar wave

equation

V3u + k2n?(P)u = 0. (26)

Expressing the index of refraction as
nP) = 1 + n(P), (27)
where }n,( P)l « 1, and using the Rytov method of smooth perturbations that

employs u = exp(¥), Y=¥, + ¥, + .., andu=uy, +u, + .., the wave

equation becomes

vy, .+ 2VY, VY, + 2k2n,(P) = 0. (28)
This has a soiution
*” - 2,':(,,1’ (M) () '”""l:"l’ ",|’ D v, (29)
19




For a spherical wave

wli?)) = 9_'!_‘%'!!.150., (Q - constant) (30)
and for small wavelengths A « {, where { (the inner scale) characterizes the
size of the smaliest fluctuations in the index of refraction, the Fresnel

spproximation in Cartesian coordinates reduces Eq. (29) to

— 2000 o 'Nez'? (xleyh - 222’ fox'epy ),

' (- 31
vin - £ [, ne t,’(:_: ’1’ 2) o Y

The statistics of the turbulence sppeasr in ¥, and n, in terms of spectral
expansions where n, contsins the three-dimensional spatial frequency spectrum
of refractive index fluctuations, ®,(x). The Rytov approximation introduces the

log ampiitude fluctuation X

Xshh 2, (32)

where A and A, sre the amplitudes of the turbulence perturbed E-field u and

the free space E-field u,

us Ae'®
33
%‘A,.“. ( ’
Then, after an extended series of manipulations (see Tatarski, 1961) that
assume local homogeneity and isotropy, the variance of the log ampiitude

20




fluctuation X of a spherical wave propagating over a distance L becomes

T axth? [“oc x [Loz 0,(x2) aﬂﬁfé‘ﬁ_’l]. (34)

where k = 2x/A, and x = spatial wavenumber (red/m), which is used here
instead of spatial frequency f (1/m) to be consistent with previous work.
Assuming that the irradiance follows a log normal distribution (Tatarski, 1961),

the normalized irradiance variance is a function of the log amplitude variance

L .op(axt) -1, (38)

The assumption of isotropic, homogeneous turbulence gives a
Kolmogorov spectrum of refractive index fluctuations of the form
®,(x,2) = 0.033 C,%(z) x"'° (Tatarski, 1961). Assuming, for computational
convenience, that this x ' power law dependence hoids over the entire range
of spatial wavenumbers x, and that the turbulence strength C *(z) is uniform
along the path, then integration of Eq. (34) gives the log ampiitude variance for
a spherical wave as

Xt - 0.124 C2 A8 LS, (s€)

The normalized irradiance variance of Eq. (35) becomes

21




]
-;’-;- = op(4 XT) - 1 = exp( 0487 C2 kT L1'8) _ 1, (37)

Low turbuience (small C,?) and/or short path lengths make the exponent small

enough to apply the approximation exp(a) » 1+a, giving

]
.7‘3; - 0.497 C2 k™8 LY 4 p? (38)

where the new parameter §8,°, defined by this equation, serves as the baseline
normalized irradiance variance for comparing modifications to the spectrum of
refractive index fluctuations. B aiso facilitates plotting normalized irradiance
variance over a broad range of integrated turbuience strengths.

The above steps characterize the effects of the turbulent medium
upon the irradiance statistics of a spherical wave assuming a simple
Kolmogorov spectrum of refractive index fluctuations. incorporating a high
spatial frequency rolioff at the inner scale, as shown in Fig. (7), modifies the
irradiance statistics. The inner scale ¢ represents the physical size where
viscosity of the medium smooths the velocity fluctuations by dissipating kinetic
energy and thermal diffusion smooths the temperature fluctuations (thus

refractive index fluctuations), removing the turbulent character of the medium at

this scale. This smoothing causes a rolioff of the high spatial frequency energy

22
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of the refractive index spectrum. Flatté, Wang, and Martin (1993) write the
three-dimensional isotropic spectrum as

®(x,2) = 0.033 Cy(z) x™"'B F(x,), (39)

where F(x{) represents a particular functional form of the inner scale. The
parameter x{, consists of the spatial wavenumber x (radians / meter) and the
inner scale parameter ¢, (meters). For zero inner scale (i.e. no high spatial
frequency rolloff),

F(x¢,) = 1, O<x<wo, (40)

For theoretical and computational convenience, a Gaussian rolloff inner scale is
often used (Tatarski, 1961) to represent the high spatial frequency rolloff from

viscosity

Fixty) - op(-{2) ) ()

The more realistic viscous-convective enhancement inner scale advocated by
Hill (1978) and Frehlich (1992) exhibits an enhanced spectrum for the
wavenumbers slightly less than the rolloff point. Viscosity attenuates the kinetic
energy and lowers the velocity fluctuations over regions near the inner scale
size and smalier before thermal diffusion can smooth all the temperature

fluctuations within these regions. This disparity aiters the temperature and

23




corresponding index of refraction spectra. inner-scale-sized patches of air have

different temperatures but have little internal velocity variation. Since the
Kolmogorov spectrum is based uponqthe spectrum of velocity fluctuations, these
residual temperature fluctuations cause an enhancement to the Koimogorov
spectrum around the inner scale size. At higher spatial frequencies beyond the
inner scale, thermal diffusion does smooth out these residual temperature
fluctuations and the spectrum fails off sharply.

Hill provides a plot of F(x{,) versus x{, for the viscous-convective
enhancement, that is suitable for implementing the viscous-convective
enhancement inner scale for numerical integrations and computer simulations
(Flatté, Wang, and Martin, 1993). Frehlich presents a similar characterization of
the viscous-convective enhancement inner scale based upon laser scintiliation
measurements and provides a four parameter fit to describe this version of the
viscous-convective enhancement inner scale.

Since most numerical simulations, such as the one used here,
utilize discrete Fourier transforms, the spatial frequency grid mesh chosen for
calculations introduces a maximum spatial frequency x,,, established by the
Nyquist sampling criterion (discussed in Chapter Ill). This limit creates a grid

cutoff inner scale at «,,,.

o) = (g o e (42)
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Figure (8) illustrates these five inner scales for eight inner scale
sizes. Solid curves represent the Hill version of the viscous-convective inner
scale, dashed curves represent the Frehlich version of the viscous-convective
inner scale, and dotted curves represent Gaussian inner scales. The solid line
with the box shape represents the numerical grid cutoff inner scale at x,,_, =
318 rad/m for a 1024x1024 mesh. The inner scale values of 2, 3, 4, 5, 6, 7,
10, and 15 cm refer to stratospheric propagation over 200 km, assuming an
optical wavelength of 500 nm.

The outer scale L, corresponding to the spétial wavenumber
K, = 2n/L,, represents the upper size limit to which the Koimogorov spectrum
applies. For scale sizes larger than L, (or spatial wavenumbers less than x,),
the refractive index fluctuations level off to a finite value as x approaches zero.
Physically, such a limitation exists as the spatial wavenumbers approach zero
because the refractive index fluctuations cannot become arbitrarily large, or
equivalently, the energy represented by the spectrum must remain finite
(Tatarski, 1961). Estimates of the outer scale for the stratosphere lie in the
range of tens to hundreds of meters. However, the outer scale proves to be
much more problematic to inciude in the spectrum of refractive index
fluctuations because the atmosphere is anisotropic at these large sizes

(Tatarski, 1961). The Von Karmén spectrum (Tatarski, 1961),
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Figure 8 Inner scale function F(x4) for the grid cutoff (box), Gaussian
(dotted), Hill (solid), and Frehlich (dashed) inner scales, plotted for 1024x1024
grid, L = 200 km, and A = 500 nm.
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®,(x) =

which has been used to incorporate an outer scale for some calculations, is
based upon computational convenience more than physical understanding.
Additionally the computer simulation results were compared against the Rytov-
Tatarski predictions, which were derived without an outer scale. Therefore,

these investigations did not incorporate an outer scale.

2. Atmospheric MTF and Coherence Length
Propagation through a turbuient medium not only affects the

irradiance statistics, but also reduces the spatial coherence of the wave as
characterized by the transverse coherence length. Fried (1966, p. 1372-1379)
derived a long exposure modulation transfer function (MTF) for a spherical
wave propagating through a turbulent atmosphere and used this to
parameterize the E-field transverse coherence length, r,. Following the method
and notation of Fried (which used spatial frequency f in ( m™ )), consider the
spatial Fourier transform of the intensity of an E-field propagated through the

turbulent medium and imaged by a thin iens

wh = B[ at u(R) u(®) oM, (44)
where u(X) represents the E-field in the image plane and B represents a
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normalization constant. Fried calls this the “MTF of the image-forming optical

system", assuming a unit impulse (point) illumination and anticipating the fact
that the ensemble average of (), which incorporates the effects of

atmospheric turbulence, turns out to be real. Utilizing the Fourier transform

property of a thin lens,

=
u@) <A U)o A,

where A is another normalization constant and U(#) represents the E-field in

the plane of the thin lens aperture, the MTF becomes

t(f) = A%B [ a0 U*(? - ART) U(9). (46)

Expressing the E-field U( ?) as the product of a zero turbulence propagation
part, W(?) , and an atmosphere-induced perturbation, V(¢) ,

U(9) = W(P) V(0) = W(P) o4 - D, (47)
W( ?) represents the uniformly illuminated aperture function. K ¢) represents

fluctuations in the log amplitude of the E-field and ¢( ¥ ) represents phase
fluctuations.
Taking the ensemble average < > of Eq. (48) over many

realizations and substituting in Eq. (47) gives the long exposure MTF




(Mg eponwe = A28 [ d0 W*(0 - AR W(9) ( V(9 - ART) V(9) ).(48)

Fried denotes the expectation of the fluctuations as the "atmosphere's MTF",
MTF ooll) = ( V(9 - ARI) V(9)), (49)
and Hufnagel and Stanley (19684) call this the average mutual coherence factor.
Substituting from Eq. (47),
( V(0 - ARF) V(0) ) = (@MOHO-1AN + 1-4(>-1AN ), (80)

Using the fact that ¢ and ¢ are Gaussian random variables, Fried shows that

the atmosphere's MTF reduces to

K
(V@ - AR V(i) - 02 0", (1)

where D(AR If]) represents the wave structure function and is related to the
phase structure function D, and the log amplitude structure function D, by
D(r) = D\(r) + Dy(r), where r=|0- ).Rfl. (62)

The log amplitude structure function D, and phase structure function D, are

defined as

D(r) = ([U(9) - (P-2ARNJ?),
(83)

D,(n) = (#(9) - #(9-ARN]),
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and describe the expected variation in the log amplitude and phase,
respectively, at two points a distance ARf apart. Denoting the MTF of the

aperture function W(#) as

to() = A28 [ do w(9-ARN W(9), (64)

and using the fact that the atmospheric MTF of Eq. (51) is independent of ¢,

the long exposure MTF of Eq. (48) now becomes

-1
(t(]))wm ~tfhet D(lllll). (56)
or,
"% oun . (f(n)q w. (“)
(N

The long exposure MTF is related to the mutual coherence of the
E-field. The mutual coherence function (MCF) describes the autocorrelation
between the E-field at two points and is defined as (Goodman, 1985)

MCF = ( U*(%,8) UlPut) ), (67)

where U represents the compiex E-field. For these investigations t,=t, and
explicit time notation will be dropped. Assuming homogeneity, the MCF
becomes the spatial autocorrelation of the E-field
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MCF(h = [ &' U*(*) U(r + 1. (88)

Taking the ensembie average of Eq. (46) shows that the long exposure MTF
comes from the average mutual coherence function (autocorrelation) of the

E-field in the aperture of the lens
(x(h) = A®B ([ 00 U*(0 - ARD) U(9) ) = (L U°(9) U(@+2RAT))). (69)
Rewriting Eq. (56),

.--;- oir . (f(n)qw - (( U(’,) U(”*’) )). (60)
%0 CWF) W)

Equation (60) is suitcbie for investigating the wave structure function D(r) since
computer simulations provide the E-fields U and W on the right hand side of
Eq. (80).

Fried (1966, p.1380-1384) derived the wave structure function for
8 spherical wave based on the three-dimensional spatial frequency spectrum of
refractive index fluctuations, ®,(x,2),

om-aa'k*];‘a[;[t-.l!‘g)]o,(‘.z);«. (s1)

where z represents the position along the optical path length, 0 <z <L . Fried

analytically soives Eq. (61) for a spherical wave and simple Koimogorov
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turbulence that has an index of refraction structure function
D,(r2) = Cx(2) r*A, (62)
and a thvee-dimensional spatial spectrum of refractive index fluctuations
®(x,2) - 0.033 CJ(z) «"'A. (63)
Substituting €q. (83) into Eq. (61) and integrating over spatial frequency « gives

() = 201 k* 4 [ % 0z ) (Tf". (64)

Assuming C_ X(z) = constant slong the opticsl path gives
D(r) = 1.080 k® C3 L 9, (68)

This equation reiates the wave structure function D(r) to physical parameters
k=2x=/2, C.}, and L for the propagation through turbulence. Following Fried and

defining the constant r,
.08
. , L)
N (wu el L}“ ()
Eq. (65) becomes
oy - w(-é)"'. (67)

The parameter r, characterizes the coherence length of the E-fieid because the
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resolution allowed by the turbulent atmosphere is 6, = A / r, (Fried, 1966,

p. 1380-1384).

Substituting Eq. (67) into Eq. (60) gives

."“(12)“ . Ly uer'+n ))' (68)
{ W(P) W(P'+P))

and now directly relates a measure of the coherence length, r,, to the E-fields
produced by computer simulation. Similarty, substitLting the integral form of the
wave structure function, Eq. (61), into Eq. (60) and numerically integrating for
spectra @, (x,z) with different inner scales aliows comparing theory and
computer simulation. This comparison facilitates validation of the computer
simulations incorporating an inner scale at low turbulence strengths where the
perturbation-based theory remains valid, and provides a mechanism to explore
conditions of high turbulence strength and/or long propagation path lengths (the
saturation regime) where the perturbation theory may no longer hold.




. COMPUTER SIMULATION

A. PROPAGATION CODE

These investigations utilized a wave optics computer simulation code
written by Brent Ellerbroek at the United States Air Force Phillips Laboratory in
Albuquerque, New Mexico that incorporates phase screen generation routines
written by Greg Cochrane, also with the Phillips Laboratory. The code, known
as YAPS (Yet Another Propagation Simulation), is a general purpose adaptive
optics simulation code written in FORTRAN that models optical propagation
through a turbulent atmosphere, sensing of the wavefront with Hartmann
elements (Hudgin, 1977) and a CCD array, optimized phase correction
calculation, and phase compensation via a deformabie mirror, all within a time

indexed framework. These investigations utilized only the propagation portions

of the code, modified the code to parameterize turbulence strength with C 2
instead of r,, added different source configurations, incorporated Gaussian, Hill,
and Frehlich inner scales, and reduced the memory requirements.

The computer simuiation utilizes the split-step method to simulate
propagation of the E-feid through turbulence, as illustrated in Fig. (). A source
E field (left) was propagated in steps (with zero turbulence) over the

propagation distance L with a random phase screen applied to the field at each
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Figure 9 Computer simulation using the split-step method. The source (left) is
propagated in steps out to z = L, with phase screens applied at each step.

step. This method was based upon the extended Huygens-Fresnel principle
(Yura, 1992)

o o'k v
E, - [],Ea — K(©) o7 aA, (69)
which is Eq. (10) with an extra e factor that incorporates the random variations
in log amplitude ¢ and phase ¢

oY = o' o't (70)

For paraxial propagation, if the distances n are short enough, diffraction and
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interference will not have a chance to cause significant log amplitude
fluctuations ¢, aliowing the approximation

P,

e¥ » /¢, (71)

Inserting this approximation into Egs. (11) - (19) gives

E(h2) - [of o=W o-ki:IN [ E(p,0) o/40) o-122H (72)

Thus, a single step of the split-step method requires applying the phase screen
e'* to the E-field and propagating the resuit a distance z using the Huygens-
Fresnel propagator.

To implement this sequence of steps, the YAPS code followed a user-
defined list of tasks (stored as an input file) and called the appropriate routines
to accomplish those tasks. For these investigations, a typical list (see the
Appendix) first set up the initial parameters, including random number seed,
wavelength, number and size of fields, source characteristics, and phase
screen size. The list then initialized the field grid and applied the initial source
distribution, propagated the field in steps, generated and applied phase screens
between steps, and finally saved the complex values of the propagated field.

The YAPS propagations were run on Sun SparcStation-10's having 128
megabytes of RAM. This memory constraint allowed a maximum grid size of
1024x1024 (choosing N as an integer power of 2) for the current version of

YAPS. Each run consisted of 30 propagations, each with 32 phase




screens/steps, and required ~16 hours to complete. These investigations
normally utilized nine SparcStation-10's simultaneously doing runs with different
parameters. In all, these investigations consumed roughly 6000 hours of
computer time. A small Cray mainframe was available with more RAM, but was
not utilized extensively because the muitiple SparcStations provided more
overall computational capacity.

Once the YAPS code had generated and saved the realizations of the
E-field propagated through turbulence, separate routines written in Interactive
Data Language (IDL) analyzed and displayed the ﬁelds.. Analysis included
displaying two- and three-dimensional plots of the intensity field, calculating the
dependence of intensity and normalized irradiance variance on radial distance,
calculating the normalized irradiance variance over the central portion of the
field, calculating the atmospheric MTF and corresponding coherence length,
and calculating Strehl and intensity ratios (defined in Section E below).

The wave optics computer simulation required many choices to model
the stratospheric propagation scenario and to ensure validity of the simulation.
These choices included wavelength, propagation distance, inner scale, grid size
N, the physical size of each grid element Ax, the maximum strength of
turbulence B,2,,.. the source function of the E-field, the number of phase

screens, low spatial frequency corrections, number of realizations, and methods
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of calculating average statistical values. The foliowing sections address these

and other choices and develop guidelines for validity of the simulations.

B. PHYSICAL PARAMETERS

Wave optics computer simulation of the E-field requires selection of the
parameters that describe the physical properties of the propagation. Usually a
specific propagation scenario has been selected for modeling, giving the
desired wavelength A, wavenumber k=2xn/A, propagation distance L, and the
range of turbulence strengths C,>. The stratospheric propagation scenario
chosen here used A =500 nm, L =200 km, and C,2 = [1.x10"‘, 1x10™%] m??,
From these physical parameters, other useful scaling parameters occur, such

as the Fresnel wavenumber (Martin and Flatté, 1988)

X, = "1 = _Euz = ﬁ' (73)

the Rytov-Tatarski normalized irradiance variance (Flatté, Wang, and Martin,
1993)

2
-_;—;- = C: k78 (e < p: , (74)

where a=1.23 for plane waves and a=0.497 for spherical waves, and Fried's

coherence length for spherical wave propagation (Fried, 1966, p.1380-1384)
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. (1.096::803 L)"’ (for constant C2).

The inner scale of the turbulence, &, often is not known exactly, but values can
be estimated. For stratospheric propagation, estimates -of the inner scale are
around 1 - 15 cm (Beland, 1993). Once the inner scale is known, the Hill and
Frehlich versions of the viscous-convective enhancement inner scales (Hill and
Clifford, 1978) (Frehiich, 1992) were implemented with the parameter k¢, ,
where x represents spatial frequency. The outer scale L, for stratospheric
propagation lies in the range of tens to hundreds of meters but, again, due to

the difficulty in parameterization, was not included in these simulations.

C. COMPUTATION GRID

The E-field was represented as an NxN array of complex numbers in the
plane perpendicular to the axis of propagation . Generally, N was chosen as
large as possible, consistent with the amount of computer memory available
and the time required to run a simulation. Larger grid size N allowed a wider
spatial extent of the field and/or sampling of higher spatial frequencies (denser
mesh). The physical size that each grid element represented had to be chosen

to ensure validity of the computer simulation.
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Knepp (1983) discussed the relation of grid element size Ax and physical

grid extent NAx to inner and outer scales, to proper sampling of the phase
screens, to angular spreading of the field, and to proper sampling of the spatial
frequency quadratic phase factor in the Fourier transform formulation of the
Huygens-Fresnel propagation. For the latter, the quadratic phase factor in

Eq. (20) takes the form

2L

L 76
2k’ (78)

0 =
where x is a spatial wavenumber in rad/m. Applying the Nyquist criterion,
which requires that this quadratic phase change by less than = across one grid

element Ax, Knepp derives

L< ?L(AA_XK_ s
Roberts (1986) applied similar techniques and derived Eq. (77) without
the factor of 2. Again applying the Nyquist criterion to the quadratic phase
factor in the Fourier transform propagator Eq. (20) but utilizing more succinct

differential notation,

46 _ d « ¢
o - o (x A LM YA (78)
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and,

AP = A2 x A Lfpy <x, (79)

where f__ represents the spatial frequency with the maximum rate of change of

phase. At the edge of the grid, f, is

N N 1 1
N, -N - , 80

L< N(ax)? (81)

When the propagation distance L is known, as for a specific propagation

scenario, and when the grid dimension, N, is known, then the grid element size

I_*__I 82
Ax> o (82)

Sampling of the phase factor in the spatial frequency domain must meet

is

the Nyquist criterion as a minimum. Some circumstances may warrant applying
even stricter sampling criteria such as restricting the phase to change by less
than arx across one grid element, 0 < a < 1. Furthermore, suppose the

propagation involves spatial frequencies out to gf,_, where 0 < g < 1. Then

41




Ad < ax, and the maximum spatial frequency is Bf,_,. Substituting these
constraints into the analysis gives

Ax > ‘I LN I-E. (83)

Whichever is used, Eq. (82) and (83) provide simple formulas for choosing the
minimum grid element size for the propagation.

Spherical wave propagation places an additional constraint on the choice
of grid element size. In the parabolic approximation, a spherical wave has a
quadratic phase curvature which represents divergence from a point source a

distance S (focal distance) away

(84)

where p measures the radial distance from the propagation axis. Roberts (1986)
analyzed the sampling criteria for this phase just as for the spatial frequency
phase (though applied to the case of a two-step Fourier transform Huygens-
Fresnel propagator and not applied specifically to spherical waves). Proceeding

as above and applying the Nyquist criterion to this phase factor

g . d =z P’) « A9 (88)
de dp A S Ap
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A = fﬁ%.%&g <. (86)

where p,_ . represents the maximum radial distance. Using p,,, corresponding

to the edge of the grid and Ap = Ax,

N Ax (87)

pw=-l2!Ap=——2-—.

Substituting Eq. (87) into Eq. (86) and rearranging,
A
< l_._s_ - (88)
Ax N

Again generalize the analysis by requiring the maximum phase change
across one element to be ar (0 < a < 1), and requiring the field energy to be

confined within a region of radius yp,,, . (0 <y < 1). This gives

Ax <, l ."Ts;;i (89)

Combining Eq. (83) and (89),

ll_IP_ ASa 90
~¢<Ax< Ny (80)

Spatial frequency sampling considerations for the Huygens-Fresnel propagator

have placed a lower limit on Ax, while spatial sampling considerations of the
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quadratic approximation for spherical wave phase have piaced an upper limit on

Ax.

The computer simulations used in these investigations examined high
levels of turbulence that introduced energy into the highest spatial frequencies
representable on the grid and that scattered energy to the edges of the spatial
grid. The simulations also assumed that the Nyquist sampling criterion was

sufficient. These considerations specified the parameters a = =y = 1, and

\J-L—N-[ < Ax < \J_i;-s (91)

Additionally, these simulations propagated a spherical wave from the point

lead to

source at the origin (focus) out to a distance S, i.e. S = L, making the

inequalities in Eq. (91) become the equality

A
Ax = | = (92)
N
These choices unambiguously determine the guideline for grid element size for
spherical wave propagation based upon sampling considerations in the spatial
and spatial frequency domains. Equation (92) also determines the grid element

size for plane wave propagation since minimizing the grid element size of




Eq. (82) optimizes the sampling of high spatial frequency distortions caused by
turbulence.

Some simplifications were made in the above analysis. First, the
maximum spatial distance and maximum spatial frequency used in the
quadratic phase factors were chosen for the nearest edge of the grid and
correspond to the radius of the largest circle that will fit inside the grid. These
choices disregarded the cormers of the grid, but this omission should not have
affected the simulations greatly because the majority of the energy in both the
spatial and spatial frequency domains was confined within the radius of the
circle to minimize aliasing. Second, the Nyquist criterion was applied to the

phase change across the x or y dimension of the element. Analyzing the phase
change between opposite comers of a grid element increases Af or Ap by Ji .

Finally, an NxN grid with N even requires placing the (x,y) = (0,0) point at a grid
point, such as (N/2 +1, N/2 +1) that is not the exact geometric center of the

grid. The distance to the nearest side is (N-2)/2 elements instead of N/2, which
is a minor change for large N. Incorporating these three considerations into the

analysis for a spherical wave gives

\Jﬂ_l-N_gN_-"’z < Ax< |2:~32). (93)
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However, squaring Eq. (93) and rearranging leads to

1 At
L< =~ —— (94)
4 N2
80 that a spherical wave propagation with these additional constraints should

only be carried out over a maximum distance less than S/4. Since these
investigations needed to propagate a spherical wave over the full focus
distance S starting at the source, the simpler expression Eq. (92) was used to
determine the grid eiement size for these investigations. As a comparison,
Flatté, Wang, and Martin (1993) used a grid element size of 0.7mm for a
1024x1024 grid and 0.5mm for a 2048x2048 grid with AL = 0.000638 m?.
Equation (92) with these parameters prescribes grid element sizes of 0.78 mm
and 0.55 mm, respectively, which are ~10% larger to meet sampling
considerations for the Huygens-Fresnel propagator.

The spiit-step method in the computer simulation divides the optical path
into muitiple steps. However, the distance L used to determine the grid
element size must correspond to the total propagation path length and not the
step size. To justify this, consider the vacuum propagation of a field across the
distance L = Az. if propagation occurs in a single step, then the Fourier
transform Huygens-Fresnei propagator, Eq. (20), becomes

E(az) - IFT] o4 FTIE(O)]). (96)




If the path has two steps, then

A2

Eaz) - FTI o' T FTIE(AZI2)]] (96)
and
-maAZp (97)
E(az/2) - IFT[ o T FTIE(0)]}.
Substituting Eq. (97) into Eq. (96),
5 A SEr (98)

E(az) - FTL o T FTIFTI 0 ™ F" FT(EO)]IIL

But <he middie Fourier transform/ inverse Fourier transform pair cancel each
other, and this two step vacuum propagation becomes the one step propagation
of Eq. (95). Thus, the grid element size must be chosen to correspond to the
total distance Az = L since multi-step vacuum propagations mathematically

reduce to a single step of L.

D. SOURCES

The choice of a given propagation scenario significantly affects the
irradiance and coherence statistics. Plane wave propagation differs from
spherical wave propagation, as seen in the Rytov-Tatarski theory (Tatarski,
1961), while beam wave propagation (Gaussian intensity profile) exhibits an

intermediate behavior (ishimaru, 1878). The source must also be chosen to
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keep the lateral extent of the source propagation within the spatial and spatial

frequency limits of the computer simulation.
Coherent plane, beam, and spherical waves differ in the shape of the
isophase surfaces of the E-field. Beam wave sources possess a quadratic

phase (ishimaru, 1978),

_ Ix
#(p) = < R p? (99)

where R, represents the radius of curvature of the wavefront. Plane wave

sources have an infinite radius of curvature so that

&(p) = constant. (100)
Spherical wave sources have a radius of curvature equal to the propagation

distance from the origin, or focus, S

.xp? 101
(p) S (101)

Turbulence introduces random phase shifts across the wavefront while
diffraction and interference further distort the wavefront during propagation
causing the light to become partially coherent. The resulting partially coherent
E-field no longer possesses a simple isophase surface and the coherent
wavefront characterizations no longer apply. The differences between plane,

beam, and spherical propagation appear in differences in statistical properties,
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such as normalized irradiance variance (Tatarski, 1961)

2 123 C; k™ L''®, plane
I _ (102)

497 C2 k™ LV®, spherical

o
7®

(see Ishimaru, 1978 for the more complicated beam wave expression), and the

coherence length (Fried, 1966, p. 1380-1384)
3.02 (C2H-¥ -5 L%, spherical

= (103)
1.68 (CH™¥ k% L% plane.

When the E-field has propagated through turbulence to the far field of
the source, diffraction has caused the E-field to expand laterally so that its
statistical properties approach those of a spherical wave. The far field begins

at a distance (Saleh and Teich, 1991)

z%10 B;. (104)

where p is the radius of the source. Spherical propagation properties result

when the maximum radius of the source p,,, approximately satisfies
P < VOT X Z (108)

For a stratospheric propagation scenario with L=200 km and A = 500 nm, the
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source radius must be less than 10 cm to obtain enough divergence to produce

spherical propagation statistics at z = L.

Plane wave propagation statistical properties result when the E-field is
evaluated in the near field of the source because the E-field does not have the
opportunity to diffract or expand significantly. Starting with Eq. (105) for the far

field point, near field propagation satisfies

.1 0 o2 106
z 1°1<<101, (106)

or,

Prax > VIO X Z. (107)

For the stratospheric propagation scenario, source radius p,,, > 1 m for near
field propagation. However, validity of the Fresnel approximation to the
Huygens-Fresnel equation places an upper bound on p,,. (Saleh and Teich,

1991)

(Pla)? << 4 2% A, (108)

(derived from considering the Taylor series expansion of the Cartesian
expression for r). For the L = 200 km, A = 500 nm stratospheric propagation
scenario, the upper bound on source lateral extent becomes p,,, <350 m. A

1024x1024 grid with the grid element size Ax = 0.99 cm from Eq. (92) gives a




maximum grid radius of only 5 m, so that the Fresnel approximation is satisfied
for any source represented on this grid.

Ishimaru (1978) evaluated the irradiance statistics for the intermediate
Gaussian beam wave case. The normalized irradiance variance along the
beam axis depends upon the beam waist size, W,, and the radius of curvature,
R,. Numerical integration of the log amplitude variance formula (Walters, 1994)
provides a smooth transition from spherical wave variance statistics to plane
wave statistics, with a dip in between, as shown in Fig. (10) . Numerical
simulation results with Gaussian and Airy-type sources of varying widths have a
corresponding behavior, as shown in Fig. (11).

The finite grid in a computer simulation places limitations on the source
E-field. The physical grid element size sets a lower bound on the width of a
narrow source approximating a point source. A source of width close to a
single grid element may still be undersampled, causing the resuiting propagated
field to exhibit sidelobes from absence of the proper high spatial frequencies in
the representation. Correspondingly, a spherical wave from a very narrow
source will propagate with large angular divergence that may exceed the
physical dimensions of the grid and cause energy to leak off the grid and be
aliased back into the field. Thus, the source must be wide enough to constrain

the propagated field so that most (>90%) of the energy remains within the grid.
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Figure 10 Normalized irradiance variance versus beam waist size W,, where
Q=xW, /AL, from numerical integration of ishimaru's predictions for beam

waves.
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Figure 11 Normalized irradiance variance versus beam waist size W,, where
QunW,2/AL. Solid line = Airy-type source; dashed line = Gaussian source.
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Similarly, a plane wave source cannot extend too near the grid edge because

turbulence can scatter energy off the grid only to be aliased back in.

Statistical calculations on the;al beam pattemn require a reasonably
uniform central patch to perform compittations. If the region over which
statistical calculations are made has variations, such as sidelobes arising simply
from vacuum propagation, these variations become a part of the statistics, such
as the normalized irradiance variance. Often, Gaussian type profiles present a
minimum of such variations because they do not have as much energy in high
spatial frequencies. However, because they are not flat over the calculation
region, different regions of the beam must often be weighted with respect to
their mean intensity in doing statistical calculations such as the normalized
irradiance variance.

To meet these constraints, Martin and Flatté (1990) applied a quadratic
phase curvature to a Gaussian source, thereby increasing the divergence and
flattening the final irradiance pattern. Spherical wave sources were simply
chosen narrower than the plane wave sources to make them diverge more.

Flatté, Wang, and Martin (1993) also used a super-Gaussian to model an

extended beam source.
The simulations presented here used an alternate method suggested by
Ellerbroek (1993). The final field at z = L was specified as an aperture of

radius equal to one half the grid radius and given a quadratic phase
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corresponding to a spherical wave originating at the origin z = 0 (Fig. (12)).
This aperture field was then backward propagated without turbulence from z = L
to the focus z = 0, effectively Fourier transforming the fieid and yielding the
numerical equivalent of the Airy pattern (Fig. (13)). This source was then used
as the approximation to a point source for all spherical wave propagations. The
advantages of this method were that the source was quite narrow, having
appreciable amplitude over only a few grid elements, and that the zero
turbulence propagated field at z = L was necessarily constrained within the grid
and possessed a central region with uniform illumination.

The significant energy at high spatial frequencies required to represent
the sharp edges of the initial aperture at z = L created one drawback since it
caused strong Fresnel fluctuations at intermediate distances between 0 and L.
To investigate the significance of these Fresnel fluctuations, the energy at these
high spatial frequencies were reduced by windowing the aperture before the

backward propagation by applying a Gaussian rolioff to the cylinder edges,
1 , r<077/r

o ({2222 ) a7 ne

(109)

where r' represented the corresponding aperture radius. Because this rolloff
reduced the energy in high spatial frequencies for the source representation,

this slightly increased the size of the final centrai region of the E-field where
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statistical caiculations could be performed. Other values for the power n on the
exponent were tried (n = 1, n = 5, n = 10) but the simple Gaussian (n = 2)
worked best. While this rolloff appeared useful, identical runs, one with the
sharply defined aperture edge and one with a rolled-off Gaussian edge, showed
less than 0.5% difference in the normalized irradiance variance values. This
difference was negligible compared to statistical fluctuations in normalized
irradiance variance of up to ~10% between runs with different random phase
screens. Empirical observation of simulations revealed that once even modest
amounts of turbulence existed (typically f,° > 0.05 and well within the Rytov
regime), the high spatial frequency energy introduced by the turbulence
dominated the details of the source.

Another deficiency was the representation of the initial cylindrical
aperture on a rectangular grid. Due to the Cartesian nature of the grid, the
curved beam edge was actually jagged instead of circular. However, for large
enough grid (e.g. 1024x1024) this departure from a cylinder introduced
negligible effect. The only case where a difference was noted was with a
256x256 grid, and increasing the beam radius a small fraction of a grid element
size eliminated that difference.

Another limitation of this method was that the final E-field could not
approach the grid radius. If this happened, then high turbulence strengths

would scatter energy off the grid, producing aliasing. Due to the periodic

57




Fourier transform method of propagation, this energy would not be lost, but
aliased back in at lower spatial frequencies. Martin and Flatté (1990)
implemented an attenuating region just inside the grid radius to absorb this
energy and to prevent its being aliased back in. This obviously introduced a
type of windowing function in the spatial domain and did not conserve energy in
the field, possibly complicating final field comparisons. Rather than include
those effects, these simulations simply chose the aperture radius sufficiently
small (at one half the grid radius) to prevent significant energy scattering off the
grid in the spatial domain while still providing a relatively uniformly illuminated
central region for statistical calculations.

Obviously, other choices for a source existed. For example, the initial
field could have been expressed according to an analytic expression for the
Airy pattern (Fig. (14)). This source gave a vacuum propagated final field that
was very close to a broad cylinder, but which exhibited noticeable sidelobes at
the edges (Fig. (15)). These sidelobes came from spatial truncation of the Airy
pattern. The back propagated numerical Airy pattern of Fig. (13) differs from an
analytic Airy pattern in a way that eliminates the sidelobes in the final irradiance
field.

A point source could be modeled by a single, nonzero pixel at the center
of the grid being nonzero, as shown in Fig. (16). Figure (17) shows that the

vacuum propagated field exhibited noticeable sidelobes at the edges and
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102 [T ———
1°
10-2

[

10-8

108,

Figure 16 Cross section of intensity profile from analytic Airy source after
vacuum propagation.
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covered the entire aperture, meaning that turbulence would immediately scatter
energy out of the grid only to be aliased back in and distort the fieild. A similar
source was a uniformly illuminated grid at z = L with quadratic phase, backward
propagated to z = 0. While this eliminated the vacuum propagation ringing
problem by definition, it inmediately suffered from aliasing when turbulence was

nonzero and scattered energy off the grid.

E. MAXIMUM TURBULENCE STRENGTH

One of the more difficult choices in a computer simulation of propagation
is determining the range of turbulence strengths over whicl;l a simulation is
valid. In general, the processes of optical propagation through a turbuient
medium are not band limited in spatial frequency. But when a computer
simulation uses a finite grid to implement a source function, to propagate via
the Huygens-Fresnel principle, and to model the turbulence by phase screens,
aliasing inevitably occurs due to the finite sampling interval. This problem only
becomes more severe as turbulence strength increases. The coherence length
measures the physical distance over which the mutual coherence of the E-field,
(E‘ E ) declines to e of its peak value. As turbulence increases, the E-field
fluctuates significantly over smailler and smaller distances and the coherence
length decreases. An NxN discrete grid representation of the E-field samples at

a specific minimum distance, and hence at a maximum spatial frequency. If the
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E-field uctuates in less than this minimum distance, the grid samples will not

represent the E-field accurately, causing aliasing. The question is not whether
aliasing occurs, but how much aliasing occurs for a given set of simulation
parameters, and at what point does aliasing invalidate the results of the
simulation.

These investigations identified three telitale signs of aliasing. First, as
aliasing became significant, irradiance plots of the turbulent E-field lost structure
and exhibited an isotropic fine-grained appearance, as Fig. (18) shows.

Second, the irradiance that shouid have been roughly radially symmetric

Figure 18 Iintensity plot showing fine-grained pattern due to significant aliasing.
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became bounded within a fuzzy rectangular region, as Fig. (19) illustrates. The
irradiance at the center of the image increased, or started peaking, while the
irradiance at the edges decreased, as shown in Fig. (20).

Figure (21) also illustrates this peaking behavior by plotting average
irradiance versus radius, in units of grid element size. The E-field propagated
with zero turbulence had the radially symmetric aperture profile in this
simulation. As the turbulence became stronger, the sharp edges of the initial
cylindrical irradiance pattern became rounded and energy spread outward.
However, when significant aliasing started occurring aroﬁnd B2 ~ 5 for this
64x64 grid representation, the energy began creeping inward and the center of
the field started increasing in irradiance.

The irradiance at the edge of the grid was ~1/40 that of the center when
significant aliasing began. This indicates that very little energy leaked off the
spatial grid due to beam divergence. Actually, the use of Fourier transforms in
the propagation preserved the energy so that any energy that leaked off the
grid was aliased back into the field on the grid. Energy that leaks off in the
spatial domain resuits from undersampling in the spatial frequency domain, and
vice versa.

Aliasing most often occurs from undersampling in the spatial domain,
which corresponds to energy leaking off the grid in the spatial frequency

domain. Prudent choice of source and the final irradiance patterns across the
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Figure 21 Radial intensity profiles showing peaking behavior: ,2 = 0 (solid
line), 0.5 (pluses), 1.5 (asterisks), 5 (dots), 15 (diamonds), 50 (triangles),
150 (squares), 500 (X's).
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grid can minimize the amount of energy that leaks off the grid to be aliased
back in for the spatial domain. However, as turbulence strength increases, the
coherence length decreases and more energy occurs at higher and higher
spatial frequencies. Eventually spatial undersampling occurs and this high
spatial frequency energy leaks off the spatial frequency grid and is aliased back
in. Figure (22) gives the radial power spectral density corresponding to Fig.
(21) and shows the spread of energy to higher spatial wavenumbers as
turbulence strength increases. The low turbulence spectra possess a strong
central peak that becomes more rounded and flatter as turbulence strength
increases, causing more energy to leak off the grid. Even*ually, enough energy
has leaked off the grid and aliased back in to make the spectrum approximately
uniform at all spatial frequencies.

Figure (23) actually shows this energy being reflected back in after it
spills off. To reveal this pt.enomenon, the radial power spectrum for a 512x512
grid has been divided by the corresponding part of the power spectrum on a
1024x1024 grid. Since the larger grid has been chosen with a finer mesh than
the 512x512 grid, the larger grid will not experience significant aliasing as soon.
As iurbulence strength increases, the ratio shows the enhancement of energy
at the edge of the 512x512 grid (bins 200-256) as the energy leaks off / reflects
back in. At very high levels of turbulence, the aliased energy has spread

inward over all spatial frequencies.
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Figure 22 Power spectrum radial profile as turbulence strength increases: B,’
= 0 (solid line), 0.5 (pluses), 1.5 (asterisks), 5 (dots), 15 (diamonds), 50
(triangles), 150 (squares), 500 (X's).
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Aliasing appears to cause the intensity peaking behavior of the central

field. These investigations parameterized this onset of peaking with five
methods, which provided guidelines for maximum turbulence strength B,’,,_,
valid for a given grid size. An irradiance ratio and a Strehl ratio were first used
to identify the onset of the peaking. A Gaussian source was propagated at
turbulence strengths B,’ = [5x10*, 5x10°, 5x10?, 0.15, 0.5, 1.5, 5, 15, 50,
150, 500] using 64x64, 128x128, 256x256, 512x512, and 1024x1024 grids.
Ten runs for each case were used to calculate the average irradiance as a
function of radius. These irradiance profiles were used fo calculate an
irradiance ratio, defined as the irradiance at the grid center divided by the
irradiance at the maximum grid radius, and aiso the Strehl ratio, defined as the
irradiance at the grid center for the E-field propagated through turbulence
divided by the center irradiance for an E-field propagated through zero
turbulence. Figure (24) plots the irradiance ratio versus turbulence strength for
different grid sizes, and Fig. (25) shows the Strehl ratio versus turbulence
strength for different grid sizes.

As turbulence strength increased, diffraction and scattering spread the
energy outward and caused the irradiance and Strehl ratios to decrease.
Eventually, both ratios reached a minimum and then started increasing because
of the alias-induced intensity peaking. This minimum occurred at higher
turbulence strengths for larger grid size because the larger grid sizes sampled

with a finer mesh and did not significantly alias as soon. Using estimates of
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Figure 24 Irradiance ratio versus turbulence strength ( B, = [5x10™, 5x10%] )
for grid sizes: 64x64 (asterisks), 128x128 (diamonds), 256x256 (triangles),
512x512 (squares), 1024x1024 (X's).
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Figure 28 Strehi ratio versus turbulence strength ( B, = [5x10*, 5x10%) ) for
grid sizes: 64x64 (asterisks), 128x128 (diamonds), 256x256 (triangles),
512x512 (squares), 1024x1024 (X's).
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these minima as a guide to the onset of significant aliasing, Fig. (26) plots
these B,’ values versus grid size from the irradiance and Strehi ratios, along
with least squares fits and extrapolations to larger grid sizes.

Martin and Fiatté (1988) and others have validated computer simulations
for predicting statistical properties such as normalized irradiance variance from
the E-field propagated through turbulence. The departure of the computer
simulation E-fields and intensities from their known or expected smooth
behavior as turbulence increases represents another telitale sign of significant
aliasing. Figure (27) shows the normalized irradiance variance calculated from
computer simulated E-fields versus B, using grids of sizes 64x64, 128x128,
256x256, 512x512, and 1024x1024. The irradiance value used for
normalization was taken as the average irradiance over the central calculation
region. Though this single value normalization is not optimal (see the following
section, F. Additional Simulation Parameters), it does make the normalized
irradiance variance calculation sensitive to the peaking behavior because
peaking adds large amounts of unphysical variance. in the Rytov regime
(B,? < 1.0), all grids successfully simulated the E-field as indicated by their
normalized irradiance variances agreeing with the Rytov-Tatarski theory. In the
saturation regime (B,? > 1.0) the normalized irradiance variance saturates and
turns downward, eventually approaching unity according to asymptotic theory.

Assuming that the 1024x1024 grid provides the most accurate propagation
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asterisks) estimates and least squares fits showing maximum turbulence
strength versus grid size for valid simulations.
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simulations with different grid sizes.

75




simulation, the 64x64 grid normalized irradiance variance departs from the
1024x1024 values before the peak was reached, and 128x128 grid normalized
irradiance variance departed just beyond the peak. Their meshes were not
small enough to adequately sample the E-field, and the resulting aliasing
caused peaking that drove up the normalized irradiance variance caiculation.
The 256x256 grid produced the saturation peak, but soon suffered from
significant aliasing. The 512x512 calculations successfully produced the peak
but departed from the 1024x1024 predictions before B,> ~ 50 . Judging from
these behaviors, the 1024x1024 grid probably remains valid through B,* ~ 50 .
All grids eventually showed the normalized irradiance variance anomalously
rising for high enough turbulence strength bacause aliasing produced peaking.
Estimates of the maximum B, values at which the five grid sizes remained valid
are plotted, along with a least squares fit extrapolated to larger grid sizes, in
Fig. (28).

In a similar manner, the coherence length and the half width at haif
maximum (HWHM) of the atmospheric MTF predicted using simulations with
different grid sizes also show unphysical behavior as aliasing became
significant. Figure (29) plots the simulation derived coherence length,
normalized by the Kolmogorov turbulence theoretical values, versus turbulence
strength measured by B,2. Figure (30) shows the corresponding plot for

HWHM. Boath show the eventual strong rise in coherence length and HWHM
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Figure 28 Estimates from normalized irradiance variance of maximum
turbulence strength versus grid size for valid simulations.

77




2.0

-t
"

-
o

Coherence length, ro / Theory ro

o
v
T
L

0.0 1 ] 1 } 1 1
0.001 0.010 0.100 1.000 10.000 100.000 1000.000
Beta squored

Figure 29 Spherical wave coherence length from simulations versus turbulence
strength for grid sizes 128x128 (diamonds), 256x256 (triangles), 512x512
(squares), and 1024x1024 (X's).
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Figure 30 Spherical wave HWHM from simulations versus turbulence strength
for grid sizes 128x128 (diamonds), 256x256 (triangles), 512x512 (squares), and
1024x1024 (X's).
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compared to theory for strong turbulence when aliasing produces peaking.

Estimates of the minima of the plots can be used as another indicator of the
turbulence strength at which signiﬂc:;t aliasing occurs. Figure (31) plots these
points versus grid size, along with a least squares estimate extended to larger
grid sizes.

The onset of peaking and departure from expected physical behavior
provide symptoms of aliasing but do not indicate the amount of aliasing
required to cause them. Determination of the fraction of total field energy that
is aliased serves as one parameterization of the amount of aliasing and
accomplishes two goals: (1) relate the amount of aliasing occurring to an easily
measurable characteristic of the simulation , and (2) determine how much
aliasing must occur to invalidate the computer simulation.

First, to parameterize the amount of energy aliased, the same size
Gaussian source was applied to 64x64, 128x128, 256x256, and 1024x1024
grids and then propagated through turbulence. The width of the source was
chosen so that the Fourier transform had approximately the same width on the
final grid and the Gaussian sources on the different grids were normalized to
the same energies. Since identical sources were applied in the spatial domain
according to the analytical Gaussian formula, the spatial frequency
representation of these sources improved as the grid size increased and the

mesh became finer. The 1024x1024 grid served as an approximation to infinite
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Figure 31 Estimates and least squares fits from spherical wave coherence
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turbulence strength versus grid size for valid simulations.
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grid size. Due to its larger extent and finer mesh, the 1024x1024 spatial

frequency representation of the Gaussians contained spectral energy in the
region outside the spectral footprints of the smaller grids, as Fig. (32) illustrates.
Since each grid started with the same total energy, the fraction of spectral
energy in the 1024x1024 grid lying outside the spectral footprints of the smalier
grids approximated the amount of energy aliased in the smaller grids. This
process was then applied to propagations of the Gaussian beams through

increasing strengths of turbulence, well into the significant aliasing regions for

small grid

spectral energy
allased in
small grid

large grid

Figure 32 lilustration of the spectral representations of the Gaussian beam
with different grid sizes.
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the smaller grids. This method provided estimates of the fraction of energy
aliased versus turbulence strength for the three smaller grids.

To achieve the first goal of relating the amount of aliasing to a
measurable simulation parameter, the average radial power spectral density of
the propagated E-field was calculated for each turbulence strength with the
smaller grids. Using these profiles, a spectral ratio was calculated, defined as
the ratio of the power spectral density at the grid center to the power spectral
density at the maximum grid radius. Figure (33) plots these resuits, and also
includes spectral ratios for 512x512 and 1024x1024 grids. Using the
information on fraction of energy aliased versus B,> and spectral ratio versus
Bo%, the turbulence strength B,’ served as the connection between fraction of
energy aliased and the measurable simulation parameter of spectral ratio.
Figure (34) shows plots of these spectral ratios versus corresponding fraction of
energy aliased. The log-log plot behavior proved approximately linear over the
range 0.001 to 0.1 , which appears very useful because 0.1% of energy aliased
probably does not affect the simulation results significantly while more than
10% of energy aliased probably does.

Using the data points of Fig. (34) and performing a linear least squares

fit to the logarithms

logo(M - B '°910(FH) + 10gs0A, (110)
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Figure 33 Spectral ratio versus turbulence strength for grid sizes 64x64
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or equivalently,

R = 10* (FR)®, (111)
where R refers to spectral ratio and FR refers to fraction of energy aliased,
gives A= -1.1 £ 0.1, B=-2.1 £ 0.1 . Substituting the A and B values into Eq.
(111) and rearranging,

1

FR = .
vio-R

(112)

This equation achieves the first goal of relating the fraction of energy aliased to
a measurable quantity from the simulation.

However, Eq. (112) should be used with caution because it appears to
be specific to the narrow Gaussian source used to derive it. Figure (35) shows
the same calculations carried out for a source that was the Fourier transform of
an aperture of radius equal to 3/4 of the 64x64 grid radius (i.e. Airy-type
source). The linear region did not appear, though the plot matched the
Gaussian source plot when the fraction of energy aliased was greater than
0.1 . The differences arise from the different spectral representations of the
propagated E-fields. The abrupt, cylinder-shaped irradiance patterns start with
more energy at higher spatial frequencies in the spectral domain than the
Gaussian patterns and thus never get below 0.001 fraction of energy aliased

even at very low turbulence strengths and high power spectral ratios.
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Figure 35 Power spectral density ratio versus fraction of energy aliased for
Airy-type source; grid sizes: 64x64 (dotted line), 128x128 (dashed line),
256x256 (solid line). .
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The second goal of determining the amount of aliasing that invalidates

the simulation used the fraction of spectral energy aliased to generate another
guideline for maximum strength of turbulence for a given grid size where the
maximum fraction of energy allowed to be aliased in a simulation was 10%.
Equation (112) predicts a spectral ratio of approximately 10 for 10% of energy
aliased. Linearly interpolation between the data points of Fig. (33) provided
estimates of the turbulence strengths C,? ( thus B, ) that gave a spectral ratio
= 10, for 10% energy aliased, for the five grid sizes. Figure (36) plots these
values and a least squares fit extended to larger grid sizes. The least squares

fit as a function of grid size N was
log,oB2 = 0.9 log,o( N ) - 0.9, (113)

or,

Bs = 0.1 N©9, (114)

The fraction of energy aliased also provided estimates of maximum B’
for the Airy-type source. Figure (37) plots the fraction of energy aliased versus
turbulence strength for the 64x64, 128x128, and 256x256 grids. Again
choosing 10% energy aliased and using linear interpolation yields data points
for the solid line in Fig. (36) that shows the maximum turbulence strengths

obtained from Fig. (37). For 10% energy aliased, the predictions for maximum
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Figure 37 Fraction of energy alissed versus turbulence strength with an Airy-
type source for grid sizes 84x64, 128x128, and 256x256.
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B,: for the three smaller grids using the Airy-type source agree within ~20% with

the predictions frora the Gaussian source. Lower va@ues of fractional energy
aliased do not provide such sgreement.

Another measure of maximum turbulence strength involved the
coherence length and grid size. Aliasing occurs because the E-field fluctuates
significantly over scale sizes smaller than the grid element size. Intuitively,
some connection should exist between coherence length of the E-field and the
onset of significant aliasing. Fried's coherence length r, represents the distance
over which the atmospheric MTF falls to exp(-3.44) = 0.032 (Fried, 1966, p.
1380-1383). Equation (38), which relates ,’ to C.%, and Eq. (66), which
reiates r, to C,?, and Eq. (92), which reiates the grid element size Ax to N,
when combined, yield the turbulence strength cormesponding to a given grid size

for 8 specific number (y) of AxX’s per r,

0.877 v ® N sohericel wave
0.620 v ¥ N pigne wawe

pl . { (116)

Figure (38) plots these B, fory =2, 2.5 snd 3 for the spherical wave case.
The 10% asliased energy line, indicated by pius symbols, lies nearest the 2.5 Ax
per 1, line. The E-field must be spatialty sampled with 2.5 Ax per r, to limit the
fraction of energy shased to 10%, analogous to the Nyquist criterion of two

samples per cycle.
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Figure (39) provides a combined plot of the maximum turbuience

strength B, that produced valid E-fields for a given grid size from all of the
foregoing measures 1sity ratio, Strehl ratio, normalized irradiance variance,
coherence length, HvviM, fraction of energy aliased, and coherence length

(y = 2.5). Most estimates lie within a factor of 2 of each other, and the 10%
energy aliased line (dotted/piuses) given by Eq. (114) represents an
approximate lower bound to those estimates based upon onset of significant
aliasing.

Figure (38) provided three s nifi. ..t conclusions: (1) the computer
simulations remained valid untit approxsmatei, 10% of the energy became
aliased (achieving the first goal), (2) using the 10% energy aliased line, the
maximum turbulence strength B, for valid E-fields for @ grid size M was

Poy - O1 N°, (116)
and (3) maximum valid turbuience strength coresponded to approximately
2.5 grid elements per r, (based on proximity of the y = 2.5 line to the 10%
energy aliased line). Conclusion (2) implies that doubling the grid size N (with
grid slement size Ax given by Eq. (82)) slightly less than doubles the maximum
B, that the grid can simulate, and that these investigstions, which use a

1024x1024 grid, shouid be vaiid up to B’ ~ 50.
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F. ADDITIONAL SIMULATION PARAMETERS

Additional aspects of a computer simulation were addressed to ensure
validity, including the number of phase screens, the method of normalizing the
irradiance variance, the number of realizations (propagations through
turbulence) required for representative statistics, and the width of the final
irradiance field on the grid.

The number of phase screens must be large enough to represent the
turbuience accurately along the path and produce proper irradiance and
coherence statistics. Martin and Flatté (1988) determined the number of phase
screens by requiring that the variance due to propagation over the distance Az
between phase screens be less than 1/10 the variance from the total

propagation over the distance L
oj(az) < 0.1 of(L), (117)

and additionally that the value of the variance from one step be iess than 0.1

of(az) < 0.1 . (118)

With these considerations, they generally used 20 phase screeas for their
simulations.
These investigations examined the iradiance and coherence statistics

direclly and conciuded that spproximately 30 phase screens were required to




ensure simulation validity. Figure (40) shows a set of spherical wave

normalized irradiance variance simulations for a 512x512 grid, B, = 1.5, and

the number of phase screens varying between 2, 4, 8, 16, 32, and 64.

Assuming the 64 phase screen case most closely approximated physical reality,
as few as 8 phase screens gave a normalized irradiance variance within ~10% of
this value. By 32 phase screens, the normalized irradiance variance had
stabilized to within 2% of the 64 phase screen value. For this level of

turbulence that lies at the beginning of the saturation regime, the addition of
phase screens beyond 32 did not affect the normalized imadiance variance
significantly.

Figure (41) shows the normalized irradiance variance from propagations
with 2, 4, 8, 18, 32, and 64 phase screens at §,’ = 50 with a 1024x1024 grid
and 30 realizations for each number of phase screens. This strength of
turbulence represents the limit of simulation validity with the 1024x1024 grid
and lies in the strong saturation regime beyond the normalized imadiance
variance peak. In this case, 32 phase screens provided a normalized
irradiance variance within 3% of the 64 phase screen case, and the 16 phase
screen vaiue was within approximately 10%. Because 32 phase screens
appears to increase the accuracy of the simulation by ~5% compared to 16

phase screens, the larger number of phase screens was chosen for these

investigations.
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Using the same 1024x1024 realizations, the coherence length r, and

HWHM of the atmospheric MTF were caiculated for the 2, 4, 8, 16, 32, and 64
phase screen cases. Figure (42) plots the results. For coherence length, the
32 phase screen value was within approximately 1% of the 64 phase screen
value, and the 16 phase screen value was within approximately 3%. The
HWHM plot indicates 2% and 3% agreements for 32 and 16 phase screens,
respectively. The 32 phase screens used for these investigations thus proved
sufficient for coherence iength and HWHM caiculations.

The method of normalizing the iradiance variance and the number of
realizations to use for statistical accuracy proved to be interrelated
considerations. Turbulence diffracts and scatters energy outward from an
initially well-defined beam. For the Airy-type source used in these
investigations, the average irradiance over the central portion of the final
propagated fieid was uniform for zero turbulence but became a function of
radial distance from the propagation axis when turbulence was present. This
was an artifact of the computer simulation that had to use a beam spatially
confined to the grid rather than a true spherical (or plane) wave. Figure (43)
shows irradiance versus radial distance r for the central 256x256 portion of
1024x1024 grid simulations, averaged over 30 reslizations, and using 8
turbulence strength B,” = 50. The average radisi iradiance varies by

aspproximately 15% over the width of this ceiculstion region. This radial
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variation of the average irradiance was removed from the normalized irradiance
variance caiculations with a method similar to that of Flatté, Wang, and Martin
(1993). The calculation region was restricted to haif the radius of the zero
turbulence irradiance pattem, which was previously chosen as one half the gnd
radius. With the 1024x1024 grid, this caiculation region equaled the largest
radius circle inside the central 256x256 portion of the grid. This disk was
further divided into concentric rings and the irradiance in each ring averaged
over alt 30 realizations. These average ring irradiances were used to normalize
the irradiance variance caiculated from each field. Smaller ring size (thus more
rings) reduced the number of points in the irradiance average for each nng and
required more realizations to ensure a sufficient number of points to yield a
stable average irradiance.

The ring width had to be smail enough to compensate for the radial
variation in average irradiance and the number of reslizations large enough to
provide enough points to yieid representative average vaiues To determine
suitable ring width and number of realizations, 50 1024x1024 reslizations with
the Airy-type source at 8,2 = 1.5, 3, 10, and 20 were run and the normalized
irradiance variances caiculated using ring widths of 128, 32, 8, 4, 2, and 1 grid
elements, Ax, and with number of reslizations in the average equai to 1, 5, 10,
15, ... ,50. Figure (44) piots the resuits for the B,” = 10 set. The pluses line

corresponds to 1 ring of width 128 Ax (i.e. the whole caiculation region) and a
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stable normalized irradiance value was achieved using about 20 realizations.
However, a single ring does not compensate for the radial variation in average
irradiance and can thus give erroneous normalized irradiance vaiues (for the
same reason, it becomes sensitive to the peaking behavior from significant
aliasing). The X line represents the division of the disk into 4 rings of width 32
Ax and required ~25 realizations in the average to give a stable normalized
irradiance variance. Smaller ring widths (lines with squares, diamonds,
triangles, and asterisks (ines) ali showed similar behavior and required ~ 30 runs
to reach a stable average normalized iradiance variance. The B’ = 1.5, 3,
and 20 runs all provided similar results. A similar B, = 10 series with a
Gaussian source required a minimum of 8 rings (16 Ax each) and 30
realizations to achieve stable average normalized irradiance variances.
Consequently, these investigations used 30 realizations as a8 guideline for valid
simulation, and chose a ring width of four grid elements to aliow the greatest
adjustment to real varistions in average radial intensity and yet remain
computationaily efficient. As Fig. (44) shows, insufficient averaging over enough
realizations to yield truly representative average vaiues can reduce the
normalized irradiance variance by 15 - 30%.

Similarly, stable coherence length values (discussed in section, H.
Coherence Length) required averaging over multiple realizations. To determine
the number of reslizations required in the average, 50 realizations using a
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1024x1024 grid were generated for B, = 3 and 20 and the central 256x256

portion of the fields again used to caiculate the atmospheric MTFs. These
individual MTFs were then averaged in groups of 1, 5, 10, 15, ... , 50 before
caiculating the coherence lengths. Figure (45) shows the resulting coherence
lengths, r,. (These particular runs used L = 150 m and A = 420 nm, giving a
Fresnel length s /A L7 2 x = 10 mm and resulting in millimeter-sized
coherence lengths.) As few as 5 realizations in the average yielded coherence
iengths within 4% of the 50-realization values. These investigations still used
30 realizations in the average because these 30 fieids were already available
from the normalized irradiance variance calculations.

The irradiance ratio provided an indicator of the appropriate final beam
radius to use to avoid excessive scatter of energy off the grid. The maximum
B,’ for a given grid varies with the final beam radius because larger radii scatter
energy off the grid sooner and cause aliasing at lower .. To characterize this
behavior, 64x64, 128x128, and 256x256 grid simulations were run at turbulence
strengths B,’ = [5x10™, 5x107) for final beam radii of 4/8, 5/8, 6/8, and 7/8 grid
radius, and the resulting irradiance ratios (average irradiance at center divided
by average irradiance at grid radius) were piotted versus B,' . Figure (46)
shows the piot for the 256x258 grid. Again, the minima correspond to the onset
of peaking and occur at lower B, for larger final beam radius. Linear least

squares fit of the final beam radii to these 6, vaiues for the minimum
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irradiance ratios indicates that a final beam radius of approximately 0.7 grid
radius corresponds with the 10% energy aliased cutoff B, for the grids. A final
beam of 0.7 grid radius provided the largest illuminated central region while still
meeting the 10% aliased energy criterion. To be somewhat conservative, these
investigations used a final beam radius = 0.5 grid radius to reduce further the

energy scattered off the grid.

G. PHASE SCREENS

1. Phase Screen Generation

With the split-step method, the effects of turbulence along the
optical path are introduced into the simulation by dividing the optical path into
steps and applying 8 random phase to the complex E-field at each step. As
long as the steps are small enough that geometrical optics approximately
applies, the E-field only acquires a random phase change as it propagates
across each step (Knepp, 1983). Diffraction as the field propagates across
many steps then produces the amplitude variations. The random phases are
assumed to be Gaussian distributed about a zero mean with variance
proportional to the turbuience strength C,? and possessing spatial structure
function consistent with the assumed Koimogorov turbulence and appropriate
inner scale. Knepp (1983) and Martin and Flatté (1988) describe the process
of generating the phase screen with these characteristics, as discussed below.
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The phase screen generation begins in the spatial frequency

domain by imposing the proper spatial structure function. An NxN grid of
compiex numbers 6,(x, x,) is formed whose real and imaginary parts are each
Gaussian distributed random numbers with zero mean and unity standard
deviation. This ©,(x,,x,) represents the Fourier transform of a grid of
uncorrelated Gaussian distributed random numbers 6,(x,y) representing phases.
The proper spatial structure function corresponding to turbulence statistics is
imposed upon the random phases 6,(x,y) by applying a filter A(x,,x,) to
6,(x,.x,)
0(x,ix,) = A(x,.x,) B(x,.x,). (119)

Taking the magnitude of both sides of Eq. (118), squaring, assuming that the
filter function is real, and then taking expectation values gives

(1 O(xyx)) 1) = A2(x,x)) (| Bglx,x) [2) = A%(x,x,),  (120)
where use was made of the fact that the Gaussian random numbers 8,(x,.x,)
have a variance of 1. The two-dimensional power spectral density of the phase

Fs(x,.x,) is related to 6(x,,x,) by (Goodman, 1885)

Fy(x,x)) = (| O(x,x)[2 ) (Ax)?, (121)
where Ax represents the grid element size in the spatial frequency domain.
The Hankel transform of the power spectral density F,(x) gives the phase

structure function Dy(p) that characterizes the spatial distribution of the phase

fluctuations of the E-field (Tatarski, 1961)
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Ds(p) = [11 - Uylxp) | Fy(x,0) x o, (122)

—

where iocal isotropy has been assumed. Tatarski derived the relation between
the two-dimensional power spectral density of phase fluctuations F4(x,,x,) and
the three-dimensional spectrum of index of refraction fluctuation_, ®,(x),

Fy(x,0) = 2xk? L ®,(x), (123)

where x-ﬁ.’+:,’ . This sequence of steps means that the phase screen

can have the proper spatial statistics by starting with the proper spectrum of
refractive index fluctuations (hence, the proper structure function).

The spectrum of index of refraction fluctuations assuming
Koimogorov turbulence with inner scale is

®,(x,2) = 0.033 C)(2) =P F(xy,), (124)

where F(x{) gives the inner scale dependence for inner scale ¢, (see Fig. 8).

Substituting Eq. (124) into Eq. (123) gives the power spectral density of phase
fluctuations

Fy(x,2) = 2xk? L (0.033) C(2) x""'P F(xy,), (126)

and using Eq. (121) specifies the proper form for 6(x,,x,), the corresponding
Fourier transform of the random phases

(18(x,x,) ) = (ax)® 2xA? L (0.033) Ci(2) x™"'P F(xy). (126)
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Equation (120) then gives the corresponding fiiter function A(x,.x,) to apply to

the array of compiex numbers 6,(x,.x,)

A(xex,) = (Ax )™ J2xk? L (0.033) Cr(2) '@ F(xg).  (127)

Since the Koimogorov spectrum (« x**?) has a singularity at x = 0, the x=0
point in the filter function is set to zero, removing overall piston (i.e. common
phase offset over whole screen) from the phase (Cochrane, 1985) and keeping
the spectral energy finite. Conversion to a8 discrete grid representation occurs
by substituting x, = n, Ax, x, =n, Ax, x*=(Ax)’(n’+n?), and

Ax = 2x/(N Ax), where Ax is the grid element size in the x-y domain and (n,,n,)
are grid coordinates. The Fourier transform (FT) of the filtered array of random

variables gives the phase screen in the spatial domain
8(x.y) - 0.0984 k [CXZ) L (N ax)™ FT[ (falenl) " @ginny | (128)

Since this phase screen is actually compiex-valued, both the real and imaginary
parts represent valid random phase screens that were separately applied to the
E-field (Cochrane, 1985).
2. Low Spatial Frequency Correction
Due to the finite size of the grid, the above phase screen will not
have the proper structure function for separations of the order of the grid width.

Low spatial frequency components, especially tilt-type terms, are under-
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represented (Cochrane, 1885). These computer simulations incorporate an
aigorithm formulated by Cochrane that employs an expansion of the phase
screen in a Karhunen-Loeve basis set (whose components are mutually
orthogonal) to correct some of the low spatial frequency terms.

The general idea of the low frequency correction builds upon the
above procedure to generate a phase screen. The low spatial frequency
contribution to the phase screen is a superposition of orthogonal low spatial
frequency terms, just like the superposition of compiex exponential terms by
Fourier transform in the phase screen generation process above. The strength
of each low spatial frequency term is a Gaussian random variable with an
appropriate variance, just as the Gaussian random numbers above were filtered
to give the proper variance and thus determine the strength of the
corresponding complex exponential in the spatial domain. Thus, the two
objectives involve finding an appropriate set of orthogonal low spatial frequency
functions, and determining the corresponding variances applicable to
atmospheric turbulence.

An arbitrary function can be expanded in terms of Karhunen-
Loeve functions that are orthogonal by definition. To determine a set of
Karhunen-Loeve functions appropriate for Koimogorov turbulence, Cochrane
builds on the work of Noil and (1975) considers expansion of an arbitrary

function ¢(r,8) over a circular aperture of radius R in terms of Zemike
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polynomiasis (Bom and Wolfe, 1970)

(r.0) = B‘/Z[(Pne). (129)
=

where p represents the normalized distance r/R, a, are the expansion
coefficients, and Z, are the Zemike polynomials. With W(r/R) representing the
sperture function, the coefficients are

8 = (1/R?) [d* W(rIR) é(r.0) Z(rIR.0). (130)

Noill assumed that these coefficients were Gaussian random variables with zero
mean and with a covariance

(a'ay) = [do [dp’ Wip)W(p") Z(p.0) ( (Ap) &(Rp)) ) Z,(p",0).(131)
Fourier transforming to the spatial frequency domain

(a'ay) = [[ ok O¥ Qj(x) ®(x/R.¥IA) Qu(x), (132)

where Q(x) represents the Fourier transform of the jth Zemike polynomial, and
®(x/R x'/R) represents the Koimogorov spectrum of phase fluctuations. Noll
analytically performed the integrais to give a covariance matrix in which the
terms represent the expected covariances due to Kolmogorov turbulence.
Cochrane (1985) notes that the Zemike polynomisis cannot be
used to form an orthogonal expansion of the turbulence-distorted phase
because the expansion coefficients are correlated, indicated by nonzero off-
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diagonal elements in Noll's covariance matrix. However, the eigenvectors of
the Zemike covariance matrix serve as a Karhunen-Loeve basis set. These
eigenvectors K, can represent turbulence because they are not correlated, i.e.
each eigenvector K is formed by superposition of Zermike polynomials in such
a way that the K, are orthogonal, satisfying the first objective. Additionally, the
corresponding eigenvalue A, muttiplied by (D/r,)** (where D is the aperture
diameter and r, is Fried's coherence length (Fried, 1965)) gives the appropriate
variance for that K, spatial component corresponding with Koimogorov
turbulence, satisfying the second objective.

Specifically, the low spatial frequency contribution to the phase
screen can be expanded in terms of these Karhunen-Loeve components K,

(Cochrane, 1985)

Pos r
*n=-2x v, ‘,(a—é). (133)
p=1
where p__, represents the number of low spatial frequency Karhunen-Loeve
terms included and the coefficients y, are Gaussian random numbers with
variance A, and scaled by (D/r,)*® to the specific strength of turbulence used.
The simulations use the first five terms ( p__ = 5 ) as a compromise between

compieteness of iow spatial frequency correction and computational efficiency.
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Figure (47) shows a surface plot of one realization of the first two terms of the
correction, which are very close to x- and y-tilt (i.e. phase terms linear in x and
y, respectively). Figure (48) shows:aalization of the 3rd, 4th, and 5th
correction terms, which resembie the wavefront aberrations associated with
defocussing and astigmatism in a conventional imaging system. To implement
the low spatial frequency phase correction, (1) the scalar product was formed
between the initial Fourier transform phase screen and each Karhunen-Loeve
function K, jiving the relative strength of that K, in the initial phase screen; (2)
this amount of each spatial component K, was then subtracted from the phase
screen; and (3) the K, component was then added back to the phase screen in
the proper amount given by the product of a Gaussian random number y, with
variance A, and the factor (DIr,)* to scale to the particular strength of
turbulence used.

Cochrane's computer routines only calculate the Karhunen-Loeve
correction terms over the largest circle that fits inside the calculation grid, as

shown in Figs. (47) and (48). Correction of the E-field over the entire computer

simulation grid requires the Karhunen-Loeve terms be calculated over an area
that is at least /2 larger on each side than the field grid (Cochrane, 1985). If

the E-field grid size N is chosen as a power of 2, then the Karhunen-Loeve grid
must be 2Nx2N. These simuiations however used only an NxN grid

(1024x1024) because the Sun SparcStations could not handie the memory
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Figure 47 Terms 1 and 2 of Karhunen-Loeve low spatial frequency cormrection
to phase screen, represented in optical path length for wavelength = 500 nm.
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Figure 48 Terms 3, 4, 5 of Karhunen-Loeve low spatial frequency correction to
phase screen, represented in optical path iength for waveiength = 500 nm.
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requirements of the doubled grid (2048x2048) without a major revision of the
propagation code. Since the source function was chosen to minimize energy
scattered off the grid, very little energy fell in the uncorrected comners of the grid
and the simulation remained valid.

Noll's covariance matrix assumes Koimogorov turbulence
spectrum with zero inner scale making the Karhunen-Loeve correction terms
strictly apply only to this spectrum. These simulations however incorporate
nonzero inner scales into the spectrum of refractive index fluctuations.

Because the first five Karhunen-Loeve terms cover scale sizes on the order of
the grid width, which is much larger than the inner scale size §, the Karhunen-
Loeve cofrection terms derived for zero inner scale remain valid for correcting

nonzero inner scale phase screens.

Cochrane (1985) showed that such low spatial frequency
correction greatly improved the phase structure function. Two terms corrected
the structure function to within 10% of the theoretical Koimogorov behavior, and
five terms corrected to within 5%, compared with 30 - 1000% discrepancies
without any correction at low spatial frequencies. Figure (49) plots the
normalized irradiance variances from computer simulations as a function of B’
for zero Karhunen-Loeve low frequency correction, two-term correction, and
five-term correction. Zero correction underestimated the irradiance variance in

the Rytov regime by approximately 5%, and the two-term tilt-type correction also
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underestimated by about 5%. The five-term correction with its focussing type
terms raised the variance to within about 2% of the theoretical variance. In the
saturation regime, the two- and five-term corrections fit better. Figure (50) plots
the coherence length r,, normalized by the theoretical coherence length, as a
function of turbulence strength for zero, two-, and five-term Karhunen-Loeve low
spatial frequency corrections. In the Rytov regime where simulation should
closely approximate theory, the zero correction overestimated the coherence
length by approximately 35%. The tilt-type correction (two terms) estimated the
coherence length within about 5%, and the five-term correction achieved
agreement within about 2%. These behaviors formed the guideline that some
type of low spatial frequency correction was required to achieve valid
coherence lengths from computer simulation.

This low spatial frequency correction method remained
computationally feasible because the Noll covariance matrix only needed to be
calculated once and because only a few terms of the Karhunen-Loeve
expansion were used. However, the code can become memory intensive
because it saves a full NxN grid for each Karhunen-Loeve function in addition
to the NxN phase screen itself. Implementation with 2048x2048 or larger grids
becomes problematical except on very large computers with about one gigabyte
of RAM. Fried(1993) has proposed a simpler x- and y-tilt correction algorithm

and indicates that this performs almost as well as including the higher order
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Figure 80 Spherical wave coherence length, normalized by theoretical
coherence length, versus turbulence strength for zero (dotted), two-term
(dashed), and five-term (solid) Karhunen-Loeve low spatial frequency
corrections to phase screens.
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Karhunen-Loeve terms, while being less memory intensive and faster than the
Karhunen-Loeve correction method. Figs. (49) and (50) indicate that the filt-
only correction may systematically underestimate the normalized irradiance
variance by about 5% and overestimate the coherence length of a spherically
diverging wave by about 5% in the Rytov regime. Depending on the
application, the Karhunen-Loeve correction to higher order terms may prove a

useful refinement.

H. COHERENCE LENGTH

The coherence length of the E-fieid was calculated from the atmospheric
MTF with the theory outlined in Chapter il, but the actual implementation of the
MTF calculation and parameterization of the coherence length r, required
careful consideration. The calculation methods that worked best for these
investigations are discussed in this section.

Equation (60) of Chapter |l relates the atmospheric MTF and the

spherical wave structure function to the coherence properties of the E-field

-3 00m  (<(M) (CUP) UF'sn))
MTF . a2 - long exposue _ . (134)
ance = © 7, ( W(M) W(P'+P))

Again, U(?) represents the E-field and W(?) represents the aperture function.

The autocorrelations of U and W indicated in Eq. (134) could be done by
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summing the compiex products of the E-fields over muitiple pairs of points or by

implementing the autocorrelation via FFT techniques. Both versions were tried
for these investigations and produced similar results, but the FFT version
provided a much more thorough autocorrelation with greater computational
efficiency.

The FFT autocorrelation technique used the MCF introduced eartier.

Equation (57) defined the mutual coherence function as
MCF = ( U*(h,,t) Ut ty) ), (136)

which, for a singie time t, = t, = t and assuming homogeneity, may be written

as the spatial autocorrelation of the E-field

MCF(?") = [ @ U(n U(P + 1). (136)

Substituting Eq. (136) into the Fourier transform identity,
MCF(”) - f dl f ) MCF('”) '-Izsf-r”] ’olz:M’. (137)
gives

MCF(V') = f df[fdr”(fw U U") ) @ -'2xl ] @*axlr (138)

Rearranging the integrations,

MCF(M') = [l [ [ at U [ [ " U(MP") o 12=17" ] ] 2=t (139)

Changing variablesto 8 =2+ P/, P =8 -1, dt" = d8,
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MCF(") = f o [ f Y 4 uini f daé U(‘) ‘~Ihl-0 l,dt-’-'l ’olhl-l". (140)

The inner integral is the Fourier transform of U(8) and is denoted by FT[ U ].

The next innermost integral is the inverse Fourier transform of U*(?) and is

denoted by IFT{ U* ]. Then,

MCF(V') = [ & FTLU] IFT{ U] 0", (141)

which is yet another inverse Fourier transform, symbolically written
MCF(Y') = IFT] FTIU] IFTIU"] ). (142)
Equation (142) expresses the autocorrelation (MCF) of the E-field in terms of
Fourier transform techniques easily implemented with discrete Fourier
transforms.
This Fourier transform method of calculating the autocorrelation of a
function is faster and more complete than the more laborious technique of

averaging the products of the E-field at point pairs. The product E*(?, )E(% ) is

complex, but because of the averaging that occurs in the autocorrelation, the
real part attains a stable value while the imaginary part averages toward zero.
For the FFT implementation on a 1024x1024 grid, the imaginary part is typically
~10* while the real part ranges between 0 and numbers on the order of unity.
The point pairs technique produces an equivalent real part but reduces the
imaginary part down to only ~10°. These investigations used the FFT version for

all autocorrelations. Additionally, the autocorrelations were normalized by their
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zero lag values to ensure that the magnitude of the MTF . calculated by
EqQ. (134) lies between O and 1.

Because the spherical wave structure function refers to points across a
spherical wavefront, U and W must similarly represent the E-field across a
spherical surface. However, the computer simulation implements the E-field on
a plane perpendicular to the axis of propagation and incorporates the spherical
wave nature of the E-field by applying a quadratic phase curvature across the
plane. To convert from this plane representation of the E-field in the simulation
to a spherical surface representation appropriate for the autocorrelation
caiculations of Eq. (134), the quadratic phase factor across the plane must be
removed from the E-field. This effectively assumes that the amplitude and the
phase fluctuations of the E-field across the plane of the computational grid
closely approximate the E-field across the spherical wave. This assumption is
justified because the maximum physical separation of the true spherical
reference surface from the plane surface of the grid is at most 1/50 the
coherence length of the E-field. However, the removal of the quadratic phase
curvature from the E-field of the grid proves crucial to the autocorrelation of U
because the quadratic phase factor undergoes ~130 multiples of 2x phase
change between the center and the outer edge of the grid for these simulations

and would otherwise compietely obscure the actual E-field fluctuations.
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Propagation with a plane or beam wave requires a different approach to
remove the proper amount of phase curvature. For a plane wave, the
wavefront coincides with the plane of the grid so that no phase curvature needs
to be removed. A pure beam wave (Gaussian profile) exhibits a spherical
phase with a radius of curvature larger than the propagation distance L, and
this phase could be calculated analytically and removed. However, the use of a
finite E-field confined to the propagation grid introduces phase effects other
than simple quadratic curvature. Fortunately, the E-field propagated through
zero turbulence contains this phase curvature information (Walters, 1994). For
spherical wave propagations, the removal of the phase curvature by the
analytical calculation and by using the zero turbulence propagated field
provided identical coherence lengths. These investigations used the latter
method for the coherence length calculations for all beam-like and plane-wave-
like propagations.

Equation (134) requires that the autocorrelation of U must be averaged
over multiple realizations to achieve the long exposure MTF. To implement this
requirement, the autocorrelations from several realizations were calculated and
averaged together, and a coherence length then determined via Eq. (134). This
method produced coherence lengths that agreed with theory within ~5% in the
Rytov regime. Recalling Fig. (45) for the coherence length versus\pymber of

realizations used in the average, the number of fields included in the MTF3
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average may be as few as 5, though 20 provided a more statistically

reproducible coherence length. Again, these simulations used 30 realizations
because these fields had already been generated for the normalized irradiance
variance calculations.

Figure (51) plots the coherence lengths calculated from the average MTF
and also plots the average of coherence lengths calculated with single
realization MTF's. The average of individual realization coherence lengths
exceeded the averaged MTF coherence length by ~20% at low turbulence
strengths but eventually agreed within 5% near the saturation regime. The
single realization MTF's showed a larger coherence length at low turbulence
strengths because the contributions frcm low spatial frequency components had
not been reduced through averaging. At these low turbulence strengths,
multiple realizations were required to average these low spatial frequency
contributions and to achieve the appropriate long exposure MTF. At higher
turbulence strengths near saturation, the E-field had more energy at high spatial
frequencies that dominated the MTF. The autocorrelation for a single
realization now averaged over many coherence lengths and yielded an MTF
close to the average MTF for multiple realizations.

Using a finite beam to approximate a spherically diverging wave
produced a radial dependence of the average irradiance that affected the

coherence length calculation, but only to a small degree. To compensate for

—
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Figure 81 Coherence lengths r, obtained by averaging r,'s from individual
realizations (diamonds) and from averaging the MCF's of individual realizaticns
prior to caiculating r, (triangles).
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this radial dependence, each E-field was divided by the radial average E-field
magnitude from the 30 realizations. Similar to the irradiance variance
caiculation, this average E-field was calculated by dividing the grid into rings
one grid element wide, taking the square root of the average intensity for each
ring over the 30 realizations, and then performing an area weighted, running
mean across the rings to smooth the variations. While this radial compensation
proved essential for the normalized irradiance variance calculation, it only
changed the coherence iength by ~1%, which was significantly less th:n the ~5%
discrepancy from the low spatial frequency correction.

The above considerations allowed calculation of the right-hand side of
Eq. (134) for the atmospheric MTF. Because of the statistical nature of the
propagation through turbutence, no set of realizations yielded an atmospheric
MTF that exactly followed the exponential rolioff with distance predicted by the
left-hand side of Eq. (134). Methods had to be developed to parameterize
these atmospheric MTF's from the simulations and extract an appropriate
coherence length corresponding to the structure function D(r).

For the case of Koimogorov turbulence, Fried (1966, p. 1380-1383)
derived the wave structure function and expressed it in terms of the single

coherence length parameter r,
D(r) - 6.88 (—) (143)

r
o
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where n = 5/3. The atmospheric MTF then becomes

~s44 (L)

MTF o, = @ (“) . (144)
To extract the coherence length r, and the exponent n (allowing the possibility
that n may vary), take the natural logarithm of both sides and rearrange

(Walters, 1893)

1 r\”
543 P MTF (1)) - (-,;) . (148)

Taking the natural logarithm again,

(-5 N(MTFpy()) = ni(A) - nin(g).  (148)

This has the linear form y = ax + b, where y represents the left hand side,
a=n, x=In(r), and b = -n in(r,). The atmospheric MTF can now be
characterized with two parameters, r, and n, or just the single parameter r,
assuming n = 5/3.

To implement these parameterizations, the atmospheric MTF was first
calculated from the E-field using the autocorrelation methods above and then
radially averaged to yield MTF . (r) for use in Eq. (146). A linear least
squares fit calculation provided the siope a = n and the intercept n In(r,), giving

f,- To obtain the single parameter characterization, n was set to 5/3 in
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Eq. (148) and least squares techniques applied to obtain the intercept and thus
the single parameter r,.

Figure (52) shows the coherence lengths caiculated with these least
squares methods, divided by the Rytov theory coherence length for Kolmogorov
turbulence. The two parameter characterization with both exponent n and
coherence length r, never provided a consistent, smoothly varying coherence
length. At low turbulence strengths in the Rytov regime where the E-field
coherence length is larger than the calculation aperture, the two parameter fit
predicted coherence lengths up to 50% higher than the tﬁeoretical value and
thus appears unreliable. Additionally, it showed an anomalous bump around
B,2 ~ 0.5 . The single parameter least squares technique with n = 5/3
accurately characterized the coherence length within 5% at low turbulence
strength, but still showed the bump at g, ~ 0.5 .

An ailtemate technique to obtain a single parameter characterization
assumed n = 5/3 in Eq. (144) and used a binary-type search, or iterative fit, to
find the coherence length r, that minimized the variance between the average
MTF_...(r) and the right-hand side of Eq. (144). Though not analytical, the
resulting r, gave an MTF that often fit the actual MTF_,..(r) more closely by eye
than the least squares methods, especially for low turbulence where coherence
lengths were larger than the grid size. To implement the technique, an initial

large range of r, (for example, 0 to 100 m) was divided in half, the midpoint r,'s
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Figure 82 Coherence lengths calculated by cne-parameter (dashed line) and
two-parameter (dotted line) least squares techniques, the iterative fit technique
(solid line), and the HWHM (dash-dot line).
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of each half were substituted into Eq. (144), and the variances were calculated.

Whichever r, provided the least variance became the middie of the next range,
and the other r, became the new h—ig:or low boundary. The process was then
repeated, so that each iteration reduced the range of possible r, by 1/3. This
procedure was iterated 100 times or until the variance was less than 1x107.

Figure (52) shows the coherence lengths predicted by this iterative fit
method along with the coherence lengths from the one- and two-parameter
least squares fits, all divided by the Rytov theory coherence length for
Kolmogorov turbulence. The iterative fit coherence length was ~5% too large at
low turbulence but did not show the anomalous bump around B,’ ~ 0.5 .

In the saturation regime where turbulence is high and/or path lengths are
long, multiple scattering becomes significant and saturates the irradiance
variance (Martin and Flatté, 1988). Correspondingly, this physical phenomenon
may also affect the coherence length and modify the value of n or the form of
Eq. (144) for the saturation regime. The haif width at half maximum (HWHM)
provided a co.arser. one parameter method of characterizing the atmospheric
MTF that did not depend on any assumptions about the form of the structure
function and could be calculated directly from the atmospheric MTF by linearly
interpolating between the pair of points bounding MTF . .(r) = 1/2. Figure (52)
plots the HWHM, divided by the HWHM predicted by Rytov theory assuming

Koimogorov turbulence. The HWHM plot starts at g,> = 0.05 because lower
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turbulence strengths gave a coherence large enough that the MTF_,.(r) had
not reached half its maximum value within the caiculation region. The HWHM
lengths followed the theoretical values within 5% in the Rytov regime and did
not show the anomalous bump around B,* ~ 0.5 . Note that the iterative fit
coherence lengths agreed with the HWHM plot better than the least squares
techniques. The HWHM and iterative fit r, proved to be the most stable
parameterizations of the E-field coherence length, and were used in all
subsequent coherence length comparisons and plots.

Other factors were also considered in the coherence length caiculation.
As stated earlier, some choices for point source, such as the Airy-type source
required more energy at high spatial frequencies than others, such as a narrow
Gaussian. While this difference produced < 2% effect in the normalized
irradiance variance calculations, it appeared to have more effect on coherence
length calculations. Figure (53) shows that an Airy-type source produced
coherence lengths up to 10% higher at low turbulence strengths than those
from the Gaussian-type source of Eq. (109). Therefore, only the latter type
source was used for further investigations.

For an arbitrary spectrum of refractive index fluctuations ®(x,z), the
integral formulation Eq. (61) provided the wave structure function for the
atmospheric MTF in Eq. (134). Specifically, numerical integration of Eq. (61) for

the spectra with grid cutoff, Gaussian, and Hill/Frehlich viscous convective
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Figure §3 Iterative fit coherence lengths versus turbulence strength for Airy-
type source (dotted), Gaussian-type source (solid), and Gaussian-type source
with zero Karhunen-Loeve low spatial frequency corrections (dashed).
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enhancement inner scales allowed comparison of theory (Eq. (134)) and the
simulation MTF,,..(r) (described in Chapter IV). However, in the structure
function numerical integration, care-;d to be exercised in properly treating the
low spatial frequency portion of the integrand since the spectra contained a
x'® singularity as x approached zero. This low frequency portion was critical
to obtain coherence lengths that approached the Koimogorov theoretical values
in the Rytov regime. The integral was successfully evaluated by integrating
analytically for 0 < x < x,,, , ( where x,_,, ~ 1x10*m™ ) (Walters, 1994) since the
inner scale function F(x¢,) = 1 here and this portion of the spectrum remains
Kolmogorov. The remaining portion of the integral that contained the inner
scale contribution was carried out numerically. More realistic spectra could also
have included an outer scale, but again no universal form of outer scale exists
due to anisotropy of the atmosphere at large scale sizes. When included in the
numerical integrations for test purposes, an outer scale raised the coherence

length compared to the Kolmogorov case. However, these investigations did

not use an explicit outer scale in the simulations.
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IV. RESULTS

A NORMALIZED IRRADIANCE VARIANCE

The computer simulation guidelines and considerations discussed in
Chapter lil were implemented to investigate the behavior of the normalized
irradiance variance and E-field coherence length in the Rytov and saturation
regimes for the grid cutoff, Gaussian, and HillFrehlich viscous-convective
enhancement inner scales. Specifically, the simulations apply to stratospheric
propagation with propagation distance L = 200 km, wavelength A = 500 nm,
strengths of turbulence 8,2 = [5x10*, 50), and inner scale sizes [0, 15) cm.
The simulations used a 1024x1024 grid with grid element size given by Eq.
(92), an Airy-type source modified to produce a final zero turbulence irradiance
pattern with edges apodized by a Gaussian (Eq. (109)) and width corresponding
to half the grid width, 32 phase screens utilizing a five-term Karhunen-Loeve
fow spatial frequency correction, and 30 realizations in each set of runs. The
central 256x256 portion of each propagated E-fisid was used for the normalized
irradiance variance and coherence length calculations.

For the Gaussian inner scale values of 0 (grid cutoff), 5, 10, and 15 cm,
Fig. (54) plots the normalized irradiance variance versus turbulence strength B,’
in the Rytov regime from both numerical integration of the equation from Rytov-

Tatarski theory, Eq. (34) (dotted lines), and from computer simulations
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Figure 84 Normalized irradiance variance (divided by B,?) from simulation
(solid) and numerical integration (dotted) for Gaussian inner scales of 0, 5, 10,
15 cm.
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(solid lines). All values are normalized by 8.2 . Numerical integration values

for 0 cm inner scale agreed within 1% of the theoretical zero inner scale values.
The difference resuited because the numerical integration was limited to spatial
frequencies below the grid cutoff x__,. Larger grid cutoff values gave closer
agreement. The simulation normalized irradiance variances agreed within 2%
of the numerical integration values for all four inner scale values examined.
Nonzero Gaussian inner scales reduced the normalized irradiance variance
below the zero inner scale value (by 10%, 25%, and 40% for the 5, 10, 15 cm
cases, respectively). Intuitively, the finite inner scale suppressed the higher
spatial frequency index of refraction fluctuations and thus reduced the variance.

Figure (55) plots the normalized irradiance variance (divided by B,?) for
the single turbulence strength B,2 = 5x10™ and Gaussian inner scale sizes of 0
(grid cutoff), 5, 10, and 15 cm. The numerical integration values (dotted line)
and computer simulation values (solid line) showed an almost linear decrease
of the normalized irradiance variance with increasing inner scale size in the
Rytov regime. As Flatté, Wang, and Martin (1993) point out, the Gaussian
inner scale does not accurately describe the inner scale observed in the
atmosphere but retains usefulness because it facilitates some theoretical
calculations.

For the Hill viscous-convective enhancement inner scale sizes of 0 (grid

cutoff), 5, 10, and 15 cm, Fig. (56) plots the normalized irradiance variance in
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Figure 68 Normalized irradiance variance from simulation (solid) and numerical
integration (dotted) for Gaussian inner scales of 0,5,10,15 cm at B,,’ = 5x10™.
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Figure 66 Normalized irradiance variance (divided by B,?) from simulation
(solid) and numerical integration (dotted) for Hill viscous-convective
enhancement inner scales of 0,5,10,15 cm.
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the Rytov regime versus turbulence strength ;> . Numerical integration of the
Rytov-Tatarski theory, Eq. (34) (dotted lines), and computer simulation (solid
lines) agreed within 2%. For the smaller inner scales, the normalized irradiance
variance exceeded the zero inner scale values (by 30% for the 5 cm case).

The viscous-convective enhancement of the strength of higher spatial
wavenumber fluctuations near the inner scale wavenumber increased the
variance. Yet, for large enough inner scale, the rolioff beyond the enhancement
suppressed the higher spatial frequency fluctuations enough to eventually
reduce the variance below the zero inner scale variance (by 30% for the 15 cm
case). The 10 cm values happened to lie within 1% of the 0 cm values.

Figure (57) plots the normalized irradiance variance (divided by B,*) for
the single turbulence strength B,’ = 5x10™ and the Hill viscous-convective
enhancement inner scale sizes of 0 (grid cutoff), 2, 3, 4, 5, 6, 7, 10, and 15 cm.
Numerical integration of the Rytov-Tatarski resuits (dotted line) and computer
simulation (solid line) clearly illustrated the rising and then falling behavior of
the normalized irradiance variance with increasing inner scale size in the Rytov

regime. The normalized irradiance variance achieved a maximum for § ~ 4 cm,
which was about 30% of the Fresnel length R,= yA L/ 2 x =126 cm.

The dashed line in Fig. (57) shows simulation values using the Frehlich
parameterization of the viscous-convective enhancement inner scale. The

Frehlich inner scale shifted the plot slightly to smalier inner scale sizes,
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maximized at 2% less than the Hill maximum, and matched the Hill values
within 3% over the range of inner scale plotted. Additionally, simulation runs
using 4 cm Hill and Frehlich inner scales agreed within 3% over the range of
turbulence strengths 5x10* < B, < 50 . Thus, the Hill and Frehlich versions
of the viscous-convective enhancement inner scale perform almost identically.
Previous investigations have illustrated the dramatic monotonic rise in
normalized irradiance variance in the saturation regime as the inner scale size
increases (Martin and Flatté, 1988). Figure (58) shows normalized irradiance
variance from computer simulations for 0 (grid cutoff), 5, 10, and 15 cm
Gaussian inner scales and a propagation path of 200 km. Figure (59) shows a
corresponding plot for O (grid cutoff), 5, 10, and 15 cm Hill inner scales. The
turbulence values range from the Rytov regime (low turbulence with B2 s 1) to
the saturation regime (high turbulence, B,> 2 1). The Rytov regime showed
again the behaviors illustrated with Figs. (54) - (67). Increasing Gaussian inner
scale size produced monotonically decreasing normalized irradiance variance.
Martin and Flatté (1988, 1990) provided similar plots of normalized irradiance
variance with a Gaussian inner scale. The Hill viscous-convective
enhancement caused the normalized irradiance variance to rise and then fall as
the inner scale size increased. However, in the saturation regime, the
normalized irradiance variance increased monotonically with increasing inner

scale size for both the Gaussian and Hill inner scales. The transition in
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Figure 89 Normalized irradiance variance over Rytov and saturation regimes
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10 (dash-dot), and 15 cm (dotted).
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behavior occurred with the onset of saturation around B, ~ 1 . This crossing

behavior has been plotted for the log intensity variance with the viscous-
convective inner scale by Hill and Clifford (1978).

Figures (54) - (57) illustrate the close agreement between numerical
integration and computer simulation values for the normalized irradiance
variance at low strengths of turbulence. This agreement provided a validity

check on these computer simulations that incorporated an inner scale.

B. COHERENCE LENGTH

Coherence lengths of the E-field were calculated from the same
1024x1024 simulation runs used for the normalized irradiance variance
calculation. The average atmospheric MTF was formed from 30 realizations
using the FFT autocorrelation method, and then the corresponding coherence
length r, and HWHM were calculated. The iterative fit ry's were used for
comparisons because they most closely followed the HWHM behavior. The
HWHM may provide the coarsest measure of coherence length but, since it
requires no assumptions about the form of the MTF, it may also be the most
reliable.

Figure (60) shows the coherence length r, from numerical integration of

Eq. (61) for an approximately zero inner scale and normalized by the theoretical
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Figure 60 Coherence length from numerical integration for zero inner scale
versus turbulence strength. Values normalized by Kolmogorov turbuience zero
inner scale coherence length.
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Kolmogorov turbulence zero inner scale coherence length r, of Eq. (66). This
plot indicates that the numerical integration coherence lengths calculated in
these investigations were accurate within 2%.

Figure (61) shows the coherence length r, from numerical integration of
Eq. (61) with the grid cutoff ., = 318 rad/m for the 1024x1024 grid. The grid
cutoff did not affect the coherence length until 8,2 ~ 1.5. Above that level of
turbulence, the absence of the very high spatial frequency contribution to the
integral caused the coherence length to become larger than the theoretical zero
inner scale value. The grid cutoff inner scale implicit in the computer
simulations with the finite grid should have a similar effect at these high
turbulence values.

Figure (62) shows the coherence length r,, normalized by the theoretical
coherence length, from computer simulation of a spherically diverging E-field.
in the Rytov regime, the simulation agreed with theory to within the ~5%
overestimation due to using only five terms in the Karhunen-Loeve low spatial
frequency correction to the phase screens (see Fig. (50)). In the saturation
re ime, the simulation coherence length (solid line) dropped below the
theoretical prediction (by ~25% at B,> = 50) and the HWHM (dotted line) mirrored
this decrease. For strong turbulence, the first order perturbation theory basis
for coherence length appears to lose validity, as it did for the normalized

irradiance variance in the saturation regime.
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Figure 61 Coherence length from numerical integration for grid cutoff inner
scale versus turbulence strength. Values normalized by Kolmogorov turbulence
Zero inner scale coherence length.
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Figure 62 Coherence length r, (solid line) and HWHM (dotted line) for
spherical wave propagation through turbulence (Values normalized by
theoretical coherence lengths).
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The drop in coherence length presumably came from strong scattering in
high turbulence, but a possible origin in the computer simulation was also
considered. The simulations started wiii. an approximate point source to
emulate spherical divergence of the E-field and required the E-field to remain
basically confined within the simulation grid over the propagation. The resuilting
E-field properties could have differed from those of a true spherical wave. To
investigate this possibility, the width of the final irradiance pattern was varied
such that wider final irradiance fields (hence narrower sources) more closely
approximated a true point source. Figure (63) plots the fesults and shows that
increasing the final irradiance width (diamond, then triangle, then square, then
X) actually lowered the coherence length in the saturation regime while still
foliowing the theory in the Rytov regime. This behavior indicated that the
observed decrease in the saturation regime was physical and not due to
simulation constraints.

To further investigate this phenomenon, beam wave (i.e. divergence
intermediate between spherical and plane waves) and plane wave
approximations were propagated on a 512x512 grid in which the width of the
source varied from 4 grid elements (Ax) to 384 grid elements (3/4 of the grid
width). Figure (64) plots the resulting coherence lengths and indicates that,
based on the behavior in the Rytov regime, the 4 Ax source (circles) produced

the spherical wave having large divergence of the E-field, the intermediate
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Figure 83 Coherence lengths r, for varying amounts of spherical divergence,

hence final irradiance pattern width: diamond = 4/8, triangle = 5/8, square = 6/8,

X = 7/8 grid width.
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source sizes (X=8 Ax, square = 16 Ax, triangle = 32 Ax, diamond = 64 Ax)
produced beam wave divergences, and wide sources (dot = 128 Ax, asterisk =
256 Ax, plus = 384 Ax) produced plane waves.

However, as the turbulence strength approached the saturation regime,
the behaviors changed. The spherical-type propagation coherence length
dropped ~15% at ,” = 15, the beam wave propagations actually increased in
coherence length, and the plane wave propagations first decreased ~5% before
increasing ~15% at B, = 15. Some of the unevenness in the beam wave
coherence lengths occurred because smaller regions of the E-field were used to
calculated the coherence lengths due to the relatively small size and divergence
of these waves.

The cause of these behaviors requires further investigation, but a
hypothesis can be made. As noted earlier, the spherical wave coherence
length probably decreased below theory for strong turbulence where the Rytov-
Tatarski first order perturbation theory was no longer valid. Strong scattering
may have induced spherical divergence of the beam waves, increasing the
coherence length, and caused the plane wave approximations to diverge like
beam waves for high turbuience.

Recapping the above resuits, investigations of coherence length via
computer simulation indicated that first order perturbation theory for coherence

lengths loses validity in the saturation regime, just as it did for normalized
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irradiance variance. The behavior of coherence length in the saturation regime
for spherical, beam, and plane wave cases requires further research.

These investigations then examined the effect of inner scale upon
coherence length for a spherically diverging beam, utilizing the 1024x1024
realizations run for the normalized irradiance variance calculations. Figure (65)
shows the coherence length r, from numerical integration of Eq. (61) for
Gaussian inner scales of 5, 10, and 15 cm. The Gaussian inner scale made
the coherence lengths larger by reducing the energy at high spatial frequencies.
Larger inner scales monotonically produced larger coherence lengths from
numerical integration at a given turbulence strength (~8% larger at B,> = 1
(beginning of saturation regime) for § = 15 cm). A plot of HWHM from
numerical integration for Gaussian inner scales wouid appear similar since the

theoretical HWHM is proportional to the Kolmogorov coherence length r,

HWHM = 0.382 r, (147)

Figure (66) shows the coherence length r, and Fig. (67) shows the
HWHM from wave optics computer simulations with Gaussian inner scales of 5,
10, and 15 cm (solid lines), superimposed upon the numerical integration
predictions of Fig. (65) (dotted lines). The r, and HWHM simulation values
agreed well with theory for B, < 0.1, but started deviating frc.. theory even
before B,> = 1, i.e. the onset of saturation for the normalized irradiance

variance. In the saturation regime, computer simulation r, and HWHM still
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Figure 88 Coherence length r, from numerical integration for Gaussian inner
scales of 5, 10, and 15 cm, normalized by the theoretical zero inner scale
coherence lengths.
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Figure 68 Coherence lengths r, from computer simulation with Gaussian inner
scales of 5, 10, and 15 cm; values normalized by the theoretical zero inner
scale coherence lengths.
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agreed well with each other, and their behavior showed a combination of
decrease in coherence length due to saturation regime turbulence and increase
in coherence iength due to inner scale.

To elucidate the effects of inner scale by itself, Figs. (68) and (69) show
the same plots of computer simulation coherence length r, and HWHM, but now
normalized by the computer simulation zero inner scale r, and HWHM values,
respectively, effectively removing ...c saturation contribution. These plots
clearly show that, even in the saturation regime, inner scale increased the
coherence length (solid lines) similarly to the predictions of theory (dotted lines).

The next set of figures plots coherence length and HWHM for
propagations through turbulence with the Hill viscous-convective enhancement
inner scale. Figure (70) plots the predicted coherence lengths from numerical
integration of Eq. (61). Note that the numerical integration coherence lengths
dropped ~5% in the range B,2 = [0.1, 1] before increasing for higher turbulence
strength. Figures (71) and (72) plot the computer simulation coherence lengths
r, and HWHM, normalized by the theoretical values for spherical waves. In the
Rytov regime, the coherence length r, decreased (~5% for ¢ = 15 cm) even for
very low turbuience (8,2 < 0.1)z, but then increased in the saturation regime as
for the Gaussian inner scale. Figures (73) and (74) plot the same coherence
lengths r, and HWHM's but divided by the zero inner scale computer simulation

values to emphasize the effect of inner scale. Figure (73) clearly shows the
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small decrease in coherence length r, in the Rytov regime, and both plots show

the general agreement between theory and computer simulation for the effect of
inner scale upon coherence length in the saturation regime. In summary, the
inner scale increased the coherence length in the saturation regime as much as
50% compared to the zero inner scale case, and more than compensated for

the decrease from strong scatter.
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Figure 88 Coherence lengths r, from computer simulation for Gaussian inner
scales of 5, 10, and 15 cm; values normalized by computer simulation zero
inner scale r,.
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Figure 70 Coherence length r, from numerical integration for Hill viscous-
convective enhancement inner scales of 5, 10, and 15 cm, normalized by the
theoretical zero inner scale coherence length.
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Figure 71  Coherence lengths r, from computer simulation with Hill viscous-
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Figure 72 HWHM's from computer simulation with Hill viscous-convective
enhancement inner scales of 5, 10, and 15 cm; values normalized by the
theoretical zero inner scale HWHM's.
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Figure 73 Coherence lengths r, from computer simulation for Hill viscous-

convective enhancement inner scales of 5, 10, and 15 cm; values normalized

by computer simulation zero inner scale r,.
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Figure 74 HWHM's from computer simulation with Hill viscous-convective
enhancement inner scales of 5, 10, and 15 cm; valued normalized by computer
simulation zero inner scale HWHM's.
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V. CONCLUSIONS

Variations in the index of refraction within a turbulent medium alter an

E-field propagating through the medium. The Rytov-Tatarski, perturbation

theory predicts the effects of the turbulence upon the irradiance statistics and

coherence length of the propagating E-field. Computer simulations modeled the

propagation of the E-field through the turbulent medium, producing irradiance

and coherence statistics to compare with theoretical resulits.

These investigations used a split-step, Huygens-Fresnel, wave optics,

computer simulation to model an E-field propagating through a turbulent

stratosphere. The limits of validity of the simulations were determined based

upon aliasing considerations, choice of source, and robustness of statistical

calculations, and produced the following guidelines:

The element size for an NxN grid should satisfy Ax= yA L7 N .

The maximum turbulence strength for which an NxN grid produces valid
E-fields is given by By, = 0.1 N %

A coherence length r, = 2.5 Ax corresponds to the maximum turbulence
strength for which an NxN grid produces valid E-fields.

The number of phase screens shouid be > 30 .
The number of realizations should be > 30 .
Low spatial frequency corrections to phase screens improve the accuracy

of the normalized irradiance variance by 5% and of the E-field coherence
length by 30%.
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« Half width at half maximum of the atmospheric MTF and an iterative fit r,
provide the most stable parameterizations of the E-field coherence length.

» Telltale signs of aliasing inciude a fine-grained irradiance pattern, a boxed
perimeter of the irradiance pattern, and peaking of energy toward the
center of the computation grid.

This research investigated the effect of (1) zero inner scale, (2) Gaussian
inner scale, (3) Hill's and (4) Frehlich’s viscous-convective enhancement inner
scales, and (5) grid cutoff inner scale on the normalized irradiance variance of a
spherical wave propagating through a turbulent medium. For the Rytov regime,
the normalized irradiance variances with grid cutoff, Gaussian, and Hill/Frehlich
viscous-convective enhancement inner scales were compared to the zero inner
scale case and to the values from numaerical integration of the Rytov-Tatarski
predictions. For low turbulence strengths, the variances obtained from the
simulations agreed within 2% of the values from the numerical integrations.
The grid cutoff inner scale, implicit in discrete grid wave optics computer
simulations, affected the variance negligibly compared to a true zero inner scale
at low turbulence strengths with the large 1024x1024 grid. Application of a
Gaussian inner scale reduced the normalized irradiance variance as much as
40% for small B, compared to the zero inner scale case. The more realistic
Hill viscous-convective enhancement inner scale raised the normalized
irradiance variance by up to 30% for smaller inner scale values, but for larger

values of inner scale eventually reduced the variance below the zero inner
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scale value as much as 30%. The latter contrasted with the behavior in the

saturation regime (B, > 1) where larger inner scales continually enhanced the
normalized irradiance variance. Th;rehlich parameterization of the viscous-
convective enhancement gave normalized irradiance values that agreed within
3% of the Hill inner scale values over the entire range of turbulence strengths
investigated.

The coherence of the E-field was studied by computing the average
atmospheric MTF from the propagated fields. Parameterizing the MTF with a
coherence length r, and half width at half max (HWHM) aliowed comparison of
the coherence length of the E-field with the predicted coherence length from the
Rytov-Tatarski-Fried theory. In the Rytov regime, simulation coherence lengths
and HWHM's for spherical and plane wave approximations agreed within 5% of
the theoretical coherence lengths/HWHM's for zero inner scale. However, in
the saturation regime, the spherical wave coherence length decreased as much
as 25% below the theory. Similar decreases resuilted for different widths of the
final E-field. Beam wave approximations gave coherence lengths that
increased toward the spherical wave values in the saturation regime, while
plane wave approximations deviated from ~5% below to ~15% above the theory

in the saturation regime. Increasing inner scale increased the coherence length

of a spherically diverging E-field by up to 50% relative to the zero inner scale
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case in the saturation regime. The amount of the increase agreed with
numerical predictions from the analytic theory.

Several avenues for further research exist. Larger grid sizes and finer
mesh could explore the behavior of normalized irradiance variance and
coherence length at higher turbulence strengths. In particular, the behavior of
coherence length for spherical, beam, and plane waves in strong turbuience
conditions need a more precise description. The atmospheric MTF's from
simulation and theory could be compared directly, rather than through a
coherence length parameterization, and the structure functions could aiso be
calculated and compared directly to investigate whether the 2/3 power law
structure function holds in saturation. Simulations could allow C *(z) to vary
along the path and could include an outer scale in the spectrum of refractive
index fluctuations to study the effects of large scale anisotropy of atmospheric
turbulence on normalized irradiance variance and coherence iength (possibly
basing the C,%(z) variations upon high frequency radar data that can resolve the
large scale variations down to about 300 m). Larger ( > 1 Gbyte RAM) and
faster computing resources would provide the catalyst for all such further

investigations of the propagation of an E-field through turbulence.
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APPENDIX

Sample listing of YAPS event input file:

EVENTS: EXPLANATION:

t 7 ;debug flag and random number seed
0.0 0.053033 ;zenith angle and r_0 at 0.5 microns
2 ;number of wavelengths

0.5e-6 0.5e-6 Jlist of wavelengths

'surf 'beam’' 0 0 0 2.531058298 0.0 0.0 0.00
;surf name, vertex location, clear aperture,
;super-Gaussian exponent, inner scale
'surf’ ‘atmos1' 0 0 6250 8.0 0.0 0.0 0.00
;surf name, vertex location, clear aperture,
;super-Gaussian exponent, inner scale
‘prof 1024 1024 0.009886946 'none’ ‘dummy’
,surface size, grid element size, file flags

‘end’ ;end of surface summary
2 1024 1024 ;number of fields and dimensions
times' 0.0 0.090002 ;time initialization
‘thread’ 0.0 1.0 1 ;propagation start
finit' 1 0.009886946 2 0 0 0 1 0 0 200000 +1

;initialize field
‘apsrf' 1 1 'beam’ ;apply aperture profile
‘aptou’ 1 ;convert from amplitude/phase to complex
‘chgfcs' 1 0 0 1.0e+30 ,change focus to apply spherical phase
‘prop' 1 0 0 200000 ;back propagate to create source
‘fidep' 1 2 ;copy field to use as source later
'‘prop'2000 ;propagate
‘openfl' ‘/data/davis/c118' 11 ;open field output file
‘chgfcs' 2 0 0 200000 ;remove spherical phase from field
'svfiddx’' 2 11 385 640 385 640 ;save field to output file
fidep' 1 2 ;copy source field to working grid

173




( following three steps repeated 32 times to propagate a distance L )

‘prop' 2 0 0 193750 ;propagate field
'mkscm’ 6250.0 1.0e-18 193750.0 ‘atmos1'
.create phase screen for Az, Cn2, position

‘apsrf’ 2 1 'atmos1’ ;apply phase screen to field
( save the field )
‘chgfcs’' 2 0 0 200000 ;remove spherical phase from field
‘'svflddx’ 2 11 385 640 385 640 ;save field to output file
‘fidep' 1 2 ;copy source field to working grid

( repeat above propagation 30 times )

'closefl' 11 ;close output file
‘end’ :end simulation
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